A. | $y=sin\frac{x}{2}$ | B. | y=sin2x | C. | $y=cos\frac{x}{4}$ | D. | y=tan2x |
分析 根據(jù)本題主要考查函數(shù)y=Asin(ωx+φ)的周期性,利用了函數(shù)y=Asin(ωx+φ)、y=Acos(ωx+φ)的周期為 $\frac{2π}{ω}$,y=Atan(ωx+φ)的周期為$\frac{π}{ω}$,得出結(jié)論.
解答 解:由于y=sin$\frac{x}{2}$ 的周期為$\frac{2π}{\frac{1}{2}}$=4π,不滿足條件,故排除A;
y=sin2x的周期為$\frac{2π}{2}$=π,故滿足條件;
y=cos$\frac{x}{4}$ 的周期為$\frac{2π}{\frac{1}{4}}$=8π,不滿足條件,故排除C;
y=tan2x的周期為$\frac{π}{2}$=4π,不滿足條件,故排除D,
故選:B.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的周期性,利用了函數(shù)y=Asin(ωx+φ)、y=Acos(ωx+φ)的周期為 $\frac{2π}{ω}$,y=Atan(ωx+φ)的周期為$\frac{π}{ω}$,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | C. | 等邊三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow a$=(1,2),$\overrightarrow b$=(0,0) | B. | $\overrightarrow a$=(1,-2),$\overrightarrow b$=(3,5) | C. | $\overrightarrow a$=(3,2),$\overrightarrow b$=(9,6) | D. | $\overrightarrow a$=(-3,3),$\overrightarrow b$=(2,-2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com