A. | 直角三角形 | B. | 等腰三角形 | C. | 等邊三角形 | D. | 等腰直角三角形 |
分析 已知等式利用正弦定理化簡(jiǎn),把sinC=sin(A+B)代入,利用兩角和與差的正弦函數(shù)公式化簡(jiǎn),整理得到A=B,即可確定出三角形形狀.
解答 解:由c=2bcosA,利用正弦定理化簡(jiǎn)得:sinC=2sinBcosA,
把sinC=sin(A+B)=sinAcosB+cosAsinB代入得:sinAcosB+cosAsinB=2sinBcosA,
即sinAcosB-cosAsinB=sin(A-B)=0,即A-B=0,
可得:A=B,即a=b,
則△ABC為等腰三角形.
故選:B.
點(diǎn)評(píng) 此題考查了正弦定理,以及兩角和與差的正弦函數(shù)公式,熟練掌握定理及公式是解本題的關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {a|0<a<$\frac{1}{3}$} | B. | {a|a<$\frac{2}{e+1}$} | C. | {a|a<$\frac{2}{3}$} | D. | {a|a<$\frac{1}{3}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=sin\frac{x}{2}$ | B. | y=sin2x | C. | $y=cos\frac{x}{4}$ | D. | y=tan2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | > | B. | < | C. | ≤ | D. | = |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\frac{6}{5}$ | C. | $\frac{5}{6}$ | D. | ±3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com