17.已知命題p:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角$θ>\frac{π}{4}$,則下面敘述正確的是( 。
A.¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ>$\frac{π}{4}$
B.¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角$θ>\frac{π}{4}$
C.¬p:?a∈[2,+∞),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ≤$\frac{π}{4}$
D.¬p是假命題

分析 寫出全稱命題的否定,求出原函數(shù)的導(dǎo)函數(shù),結(jié)合a的范圍可得f′(1)>1,即曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ>$\frac{π}{4}$,知命題p為真命題,則命題¬p為假命題.

解答 解:由已知可得,¬p為::?a∈(-∞,-2),
曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角$θ≤\frac{π}{4}$,
∵f′(x)=$\frac{{x}^{2}+2x-a}{(x+1)^{2}}$,∴f′(1)=$\frac{3-a}{4}>\frac{5}{4}>1$.
即曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ>$\frac{π}{4}$,
故p是真命題,則¬p是假命題,
故選:D.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,考查全稱命題的否定,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,如圖是根據(jù)調(diào)查結(jié)果得到的2×2列聯(lián)表.
(Ⅰ)補(bǔ)全2×2列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認(rèn)為“體育迷”與性別有關(guān)?
(Ⅱ)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為“超級體育迷”,已知有5名“超級體育迷”,其中3名男性2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
非體育迷體育迷合計
3015
451055
合計100
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量
 P(K2≥k) 0.05 0.01
 k 3.841 6.0635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx+$\frac{1-x}{ax}$,(a>0)
(1)當(dāng)a=2時,求函數(shù)f(x)在x=1處的切線方程;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增,求a的取值范圍;
(3)求函數(shù)f(x)在區(qū)間[1,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)m>0,雙曲線M:$\frac{{x}^{2}}{4}$-y2=1與圓N:x2+(y-m)2=5相切,A(-$\sqrt{5}$,0),B($\sqrt{5}$,0),若圓N上存在一點(diǎn)P滿足|PA|-|PB|=4,則點(diǎn)P到x軸的距離為$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=(x-b)lnx(b∈R)在區(qū)間[1,e]上單調(diào)遞增,則實(shí)數(shù)b的取值范圍是( 。
A.(-∞,1]B.(-∞,0)C.(-3,1]D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,正四面體V-ABC中,D是棱VC的中點(diǎn),則AD與面ABC所成角的正弦值為$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對于任意a>0且a≠1,函數(shù)f(x)=loga(x-1)+3的圖象必經(jīng)過點(diǎn)( 。
A.(4,2)B.(2,4)C.(3,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\sqrt{lo{g}_{2}(x-1)}$的定義域?yàn)锳,函數(shù)g(x)=($\frac{1}{2}$)x,(-1≤x≤0)的值域?yàn)锽.
(Ⅰ)求A∩B;
(Ⅱ)若C={x|a≤x≤2a-1},且C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$cos2α=\frac{7}{25}$,且$α∈(\frac{π}{2},π)$,則$tan(α+\frac{π}{4})$的值等于( 。
A.$-\frac{1}{7}$B.-7C.$\frac{1}{7}$D.7

查看答案和解析>>

同步練習(xí)冊答案