A. | ¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ>$\frac{π}{4}$ | |
B. | ¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角$θ>\frac{π}{4}$ | |
C. | ¬p:?a∈[2,+∞),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ≤$\frac{π}{4}$ | |
D. | ¬p是假命題 |
分析 寫出全稱命題的否定,求出原函數(shù)的導(dǎo)函數(shù),結(jié)合a的范圍可得f′(1)>1,即曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ>$\frac{π}{4}$,知命題p為真命題,則命題¬p為假命題.
解答 解:由已知可得,¬p為::?a∈(-∞,-2),
曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角$θ≤\frac{π}{4}$,
∵f′(x)=$\frac{{x}^{2}+2x-a}{(x+1)^{2}}$,∴f′(1)=$\frac{3-a}{4}>\frac{5}{4}>1$.
即曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ>$\frac{π}{4}$,
故p是真命題,則¬p是假命題,
故選:D.
點(diǎn)評 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,考查全稱命題的否定,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
非體育迷 | 體育迷 | 合計 | |
男 | 30 | 15 | |
女 | 45 | 10 | 55 |
合計 | 100 |
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.0635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | (-∞,0) | C. | (-3,1] | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,2) | B. | (2,4) | C. | (3,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{7}$ | B. | -7 | C. | $\frac{1}{7}$ | D. | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com