分析 (1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f(1),f′(1)的值,從而求出切線方程即可;
(2)求導(dǎo),將函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增化為導(dǎo)數(shù)恒不小于0,從而求a的取值范圍;
(3)討論函數(shù)f(x)在區(qū)間[1,2]上的單調(diào)性,從而確定函數(shù)f(x)在區(qū)間[1,2]上的最小值.
解答 解:(1)a=2時(shí),f(x)=lnx+$\frac{1-x}{2x}$,(x>0),且f(1)=0,
又∵f(x)=$\frac{2x-1}{{2x}^{2}}$,(x>0),
∴f(x)在x=1處的切線斜率為f′(1)=$\frac{1}{2}$,
故切線的斜率為y=$\frac{1}{2}$(x-1),
即x-2y-1=0;
(2)由題意,f′(x)=$\frac{1}{x}$-$\frac{1}{{ax}^{2}}$=$\frac{ax-1}{{ax}^{2}}$,
∵a為大于零的常數(shù),
若使函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增,
則使ax-1≥0在區(qū)間[1,+∞)上恒成立,
即a-1≥0,故a≥1;
(3)①當(dāng)a≥1時(shí),f(x)在區(qū)間[1,2]上單調(diào)遞增,
則fmin(x)=f(1)=0;
②當(dāng)0<a≤$\frac{1}{2}$時(shí),f′(x)在區(qū)間[1,2]恒不大于0,
f(x)在區(qū)間[1,2]上單調(diào)遞減,
則fmin(x)=f(2)=ln2-$\frac{1}{2a}$;
③當(dāng)$\frac{1}{2}$<a<1時(shí),令f′(x)=0可解得,x=$\frac{1}{a}$∈(1,2);
易知f(x)在區(qū)間[1,$\frac{1}{a}$]單調(diào)遞減,在[$\frac{1}{a}$,2]上單調(diào)遞增,
則fmin(x)=f($\frac{1}{a}$)=ln$\frac{1}{a}$+1-$\frac{1}{a}$;
綜上所述,
①當(dāng)a≥1時(shí),fmin(x)=0;
②當(dāng)$\frac{1}{2}$<a<1時(shí),fmin(x)=ln$\frac{1}{a}$+1-$\frac{1}{a}$;
③當(dāng)0<a≤$\frac{1}{2}$時(shí),fmin(x)=ln2-$\frac{1}{2a}$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,轉(zhuǎn)化思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
大于40歲 | 16 | ||
小于等于40歲 | 12 | ||
合計(jì) | 40 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{27}{2}$ | B. | 8 | C. | 12$\sqrt{3}$ | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ>$\frac{π}{4}$ | |
B. | ¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角$θ>\frac{π}{4}$ | |
C. | ¬p:?a∈[2,+∞),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ≤$\frac{π}{4}$ | |
D. | ¬p是假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com