若直線l:y=-x+m與曲線數(shù)學(xué)公式有兩個(gè)公共點(diǎn),則實(shí)數(shù)m的范圍________.


分析:確定曲線的幾何意義,利用圖形求出兩個(gè)極端位置m的值,即可求得實(shí)數(shù)m的范圍.
解答:曲線表示以(0,1)為圓心,2為半徑的圓在直線y=1上方的部分
如圖所示,

當(dāng)直線與圓相切時(shí),,此時(shí)m=5;
當(dāng)直線過點(diǎn)(0,)時(shí),m=
∴實(shí)數(shù)m的范圍是
故答案為:
點(diǎn)評(píng):本題考查數(shù)形結(jié)合的數(shù)學(xué)思想,考查直線與圓的位置關(guān)系,正確利用曲線的幾何意義是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P(x,y)(y≥0)為平面直角坐標(biāo)系xOy中的一個(gè)動(dòng)點(diǎn)(其中O為坐標(biāo)原點(diǎn)),點(diǎn)P到定點(diǎn)M(0,
1
2
)的距離比點(diǎn)P到x軸的距離大
1
2

(1)求點(diǎn)P的軌跡方程;
(2)若直線l:y=x+1與點(diǎn)P的軌跡相交于A、B兩點(diǎn),求線段AB的長(zhǎng);
(3)設(shè)點(diǎn)P的軌跡是曲線C,點(diǎn)Q(1,y0)是曲線C上一點(diǎn),求過點(diǎn)Q的曲線C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l:y=x與曲線C:
x=2+cosθ
y=sinθ
(參數(shù)θ∈R)公共點(diǎn)的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(12,0),M為曲線(x-6)2+y2=4上的動(dòng)點(diǎn),
(1)若
AP
= 2
AM
,試求動(dòng)點(diǎn)P的軌跡C的方程
(2)若直線l:y=-x+a與曲線C相交與不同的兩點(diǎn)E,F(xiàn).O為坐標(biāo)原點(diǎn),且
OE
OF
=12
,實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(12,0),M為曲線
x=6+2cosθ
y=2sinθ
上的動(dòng)點(diǎn).
(1)若點(diǎn)P滿足條件
AP
=2
AM
,試求動(dòng)點(diǎn)P的軌跡C的方程;
(2)若直線l:y=-x+a與曲線C相交于不同的E、F兩點(diǎn),O為坐標(biāo)原點(diǎn)且
OE
OF
=12
,求∠EOF的余弦值和實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x2-y|y|=1(|x|≤4).
(1)畫出曲線C的圖象,
(2)(文)若直線l:y=x+m與曲線C有兩個(gè)公共點(diǎn),求m的取值范圍;
(理)若直線l:y=kx-1與曲線C有兩個(gè)公共點(diǎn),求k的取值范圍;
(3)若P(0,p)(p>0),Q為曲線C上的點(diǎn),求|PQ|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案