在△ABC中,a=5,b=8,C=60°,則
CA
CB
的值為( 。
A、-20
B、20
C、20
3
D、-20
3
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應用
分析:運用向量的數(shù)量積的定義,有
CA
CB
=|
CA
|•|
CB
|•cosC,代入數(shù)據計算即可得到.
解答: 解:在△ABC中,a=5,b=8,C=60°
CA
CB
=|
CA
|•|
CB
|•cosC=8×
1
2
=20.
故選B.
點評:本題考查平面向量的數(shù)量積的定義,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(cos
ωx
2
,sinωx-
3
3
), 
n
=(2cos
ωx
2
,
3
)
,且x∈R,ω>0,若函數(shù)f(x)=
m
n
在一個周期內的圖象的最高點A、最低點B和一個零點C構成一個直角三角形的三個頂點.(如圖所示)
(1)求ω的值及函數(shù)f(x)的值域;
(2)若0<ω<1,當f(x0)=-
4
2
3
x0∈[-
14
3
,-
8
3
]
,求f(x0+1)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(1,1),2
a
+
b
=(4,2)
,則向量
a
,
b
的夾角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠產生的廢氣經過過濾后排放,過濾過程中廢氣的污染物數(shù)量Pmg/L與時間th間的關系為P=P0e-kt.如果在前5個小時消除了10%的污染物,試回答:
(1)10個小時后還剩百分之幾的污染物?
(2)污染物減少50%需要花多少時間(精確到1h)?
(3)畫出污染物數(shù)量關于時間變化的函數(shù)圖象,并在圖象上表示計算結果.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(x+
1
x
6的展開式中的常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[-2,2]上隨機取一個數(shù)x,則事件“|x+1|<1“發(fā)生的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于直線a、b、c,以及平面M、N,給出下列命題:
①若a∥M,b∥M,則a∥b;
②若a∥M,b⊥M,則a⊥b;
③若a∥b,b∥M,則a∥M;
④若a⊥M,a∥N,則M⊥N,
其中正確命題的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x≥-1時,f(x)=
2x2+5x+10
x2+5x+10
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把一顆骰子投擲兩次,第一次出現(xiàn)的點數(shù)記為m,第二次出現(xiàn)的點數(shù)記為n,則3m≠2n的概率為( 。
A、
2
3
B、
3
4
C、
1
5
D、
17
18

查看答案和解析>>

同步練習冊答案