分析 利用三角函數(shù)的平方關(guān)系得到cos(α-$\frac{π}{6}$)的值,然后將α轉(zhuǎn)化為α=(α-$\frac{π}{6}$)+$\frac{π}{6}$的形式,進(jìn)而根據(jù)兩角差的正弦函數(shù)公式,特殊角的三角函數(shù)值即可化簡求值.
解答 解:∵α∈($\frac{π}{6}$,$\frac{π}{2}$),
∴cos(α-$\frac{π}{6}$)=$\sqrt{1-\frac{1}{9}}$=$\frac{2\sqrt{2}}{3}$,
∴sinα=sin[(α-$\frac{π}{6}$)+$\frac{π}{6}$]=sin(α-$\frac{π}{6}$)cos$\frac{π}{6}$+cos(α-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{1}{3}$×$\frac{\sqrt{3}}{2}$+$\frac{2\sqrt{2}}{3}$×$\frac{1}{2}$=$\frac{\sqrt{3}+2\sqrt{2}}{6}$,
cos(α+$\frac{π}{3}$)=cos[(α-$\frac{π}{6}$)+$\frac{π}{2}$]=-sin(α-$\frac{π}{6}$)=-$\frac{1}{3}$.
故答案是:$\frac{\sqrt{3}+2\sqrt{2}}{6}$;-$\frac{1}{3}$.
點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,-1,0,1} | B. | {-1,0,1,2} | C. | {-2,-1,1} | D. | {-2,-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若整數(shù)a,b中至多有一個偶數(shù),則ab是偶數(shù) | |
B. | 若整數(shù)a,b都不是偶數(shù),則ab不是偶數(shù) | |
C. | 若ab不是偶數(shù),則整數(shù)a,b都不是偶數(shù) | |
D. | 若ab不是偶數(shù),則整數(shù)a,b不都是偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{π}{3}$] | B. | [$\frac{π}{3}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$] | C. | [0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π) | D. | [$\frac{π}{3}$,$\frac{2π}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 2或3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | d>-$\frac{8}{3}$ | B. | d<-3 | C. | -3<d≤-$\frac{8}{3}$ | D. | -3≤d<-$\frac{8}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com