5.直線xsinα+$\frac{\sqrt{3}}{3}$y+2=0的傾斜角的取值范圍是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$]C.[0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π)D.[$\frac{π}{3}$,$\frac{2π}{3}$]

分析 設(shè)直線xsinα+$\frac{\sqrt{3}}{3}$y+2=0的傾斜角為θ,θ∈[0,π).可得tanθ=-$\sqrt{3}$sinα,即可得出.

解答 解:設(shè)直線xsinα+$\frac{\sqrt{3}}{3}$y+2=0的傾斜角為θ,θ∈[0,π).
則tanθ=$-\frac{sinα}{\frac{\sqrt{3}}{3}}$=-$\sqrt{3}$sinα∈$[-\sqrt{3},\sqrt{3}]$,
∴θ∈$[0,\frac{π}{3}]$∪$[\frac{2π}{3},π]$.
故選:C.

點(diǎn)評(píng) 本題考查了直線的斜率、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{n}$=1與雙曲線$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{m}$=1有相同的焦點(diǎn),則動(dòng)點(diǎn)P(n,m)的軌跡為( 。
A.橢圓的一部分B.雙曲線的一部分C.拋物線的一部分D.直線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.函數(shù)f(x)=1g[(1-x)(x-3a-1)]的定義域?yàn)榧螦.
(1)設(shè)函數(shù)y=x2-2x+3(0≤x≤3)的值域?yàn)榧螧,若A∩B=B,求實(shí)數(shù)a的取值范圍;
(2)設(shè)集合B={x|(x-a)(x-a2-1)<0),是否存在實(shí)數(shù)a,使得A=B?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.對(duì)任意實(shí)數(shù)x,不等式ax2+2ax-(a+2)<0恒成立,則實(shí)數(shù)a的取值范圍是(-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的各項(xiàng)均不為0,其前n項(xiàng)和為Sn,且滿足a1=a,2Sn=anan+1
(1)求a2的值;
(2)求證{a2n}是等差數(shù)列;
(3)若a=-9,求數(shù)列{an}的通項(xiàng)公式an,并求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)求經(jīng)過(guò)直線l1:2x-y-3=0與l2:3x+y-1=0的交點(diǎn)且與直線x-8y+2=0垂直的直線方程;
 (2)已知點(diǎn)A(1,-2)和B(3,4)到經(jīng)過(guò)點(diǎn)P(2,3)的直線距離相等,求該直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知α∈($\frac{π}{6}$,$\frac{π}{2}$),且sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,則sinα=$\frac{\sqrt{3}+2\sqrt{2}}{6}$,cos(α+$\frac{π}{3}$)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,bn=$\frac{S_n}{n}$,n∈N*
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)若S7=7,S15=75,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)p:x<-3或x>1,q:x<-2或x>1,則¬p是¬q的必要不充分條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案