【題目】選修4—1:幾何證明選講
如圖,已知AP是⊙O的切線,P為切點(diǎn),AC是⊙O的割線,與⊙O交于B、C兩點(diǎn),圓心O在∠PAC的內(nèi)部,點(diǎn)M是BC的中點(diǎn).
(1)證明:A、P、O、M四點(diǎn)共圓;
(2)求∠OAM+∠APM的大小
【答案】(1)詳見(jiàn)解析 (2) 90°
【解析】
試題分析:(1)證明四點(diǎn)共圓,一般利用對(duì)角互補(bǔ)進(jìn)行證明:根據(jù)相切及垂徑定理得OP⊥AP及OM⊥BC,從而得∠OPA+∠OMA=180°. (2)根據(jù)四點(diǎn)共圓得同弦所對(duì)角相等:∠OAM=∠OPM,因此
∠OPM+∠APM=90°,
試題解析:(1)證明 連接OP,OM,因?yàn)锳P與⊙O相切于點(diǎn)P,所以O(shè)P⊥AP.
因?yàn)镸是⊙O的弦BC的中點(diǎn),所以O(shè)M⊥BC,
于是∠OPA+∠OMA=180°.
由圓心O在∠PAC的內(nèi)部,可知四邊形APOM的對(duì)角互補(bǔ),所以A、P、O、M四點(diǎn)共圓.
(2)解 由(1)得A、P、O、M四點(diǎn)共圓,
所以∠OAM=∠OPM,
由(1)得OP⊥AP,因?yàn)閳A心O在∠PAC的內(nèi)部,
所以∠OPM+∠APM=90°,
所以∠OAM+∠APM=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是( )
A.若兩條直線和同一個(gè)平面所成的角相等,則這兩條直線平行
B.若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行
C. 若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行
D.若兩個(gè)平面都垂直于第三個(gè)平面,則這個(gè)兩個(gè)平面平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一人連續(xù)投擲硬幣兩次,事件“至少有一次為正面”的互斥事件是( )
A.至多有一次為正面B.兩次均為正面
C.只有一次為正面D.兩次均為反面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn), 的距離之比等于.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中的軌跡為,過(guò)點(diǎn)的直線被所截得的線段的長(zhǎng)為,求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各種情況下,向量終點(diǎn)構(gòu)成什么圖形?
(1)把所有單位向量的起點(diǎn)平移到同一點(diǎn);
(2)把平行于某一直線的所有單位向量的起點(diǎn)平移到同一點(diǎn);
(3)把平行于某一直線的一切向量平移到同一起點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線: 恒過(guò)定點(diǎn),圓經(jīng)過(guò)點(diǎn)和點(diǎn),且圓心在直線上.
(1)求定點(diǎn)的坐標(biāo);
(2)求圓的方程;
(3)已知點(diǎn)為圓直徑的一個(gè)端點(diǎn),若另一個(gè)端點(diǎn)為點(diǎn),問(wèn):在軸上是否存在一點(diǎn),使得為直角三角形,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知c>0,設(shè)命題p:函數(shù)為減函數(shù).命題q:當(dāng)時(shí),函數(shù)f(x)=x+>恒成立.如果“p∨q”為真命題,“p∧q”為假命題,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是、,并且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若直線與圓:相切,并與橢圓交于不同的兩點(diǎn)、.當(dāng),且滿(mǎn)足時(shí),求面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com