6.已知f(x)=x3+mx,m∈R,若函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線與x軸平行,則m=-2.

分析 求出原函數(shù)的導(dǎo)函數(shù),再由f′(1)=0求解m的值.

解答 解:由f(x)=x3+mx,m∈R,得f′(x)=2x2+m,
∵函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線與x軸平行,
∴f′(1)=2+m=0,得m=-2.
故答案為:-2.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,過曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x,y滿足約束條件$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y-2≤0}\\{x+y-2≤0}\end{array}\right.$,若z=x-ay(a>0)的最大值為4,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)A(-1,0),B是圓F:(x-1)2+y2=16上的動點(diǎn),AB垂直平分線交BF于P,則動點(diǎn)P的軌跡方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若棱長為a的正方體的表面積等于一個球的表面積,棱長為b的正方體的體積等于該球的體積,則a,b的大小關(guān)系是a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,其體積為( 。
A.$\frac{10}{3}$B.$\frac{8}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}({1-2a})x+3a,x<1\\ lnx,x≥1\end{array}\right.$的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是(  )
A.$[{-1,\frac{1}{2}})$B.$({-1,\frac{1}{2}})$C.$({0,\frac{1}{2}})$D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)$f(x)=\left\{\begin{array}{l}{({\frac{1}{2}})^{x-a}}-4x,x<1\\{log_3}({2x+2})-1,x≥1\end{array}\right.$有零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=5x3,則f(x)+f(-x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f($\frac{π}{12}$)=(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案