17.某公司計(jì)劃購(gòu)買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500元.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得如圖柱狀圖:

記x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購(gòu)買易損零件上所需的費(fèi)用(單位:元),n表示購(gòu)機(jī)的同時(shí)購(gòu)買的易損零件數(shù).
(Ⅰ)若n=19,求y與x的函數(shù)解析式;
(Ⅱ)若要求“需更換的易損零件數(shù)不大于n”的頻率不小于0.5,求n的最小值;
(Ⅲ)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買19個(gè)易損零件,或每臺(tái)都購(gòu)買20個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購(gòu)買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買19個(gè)還是20個(gè)易損零件?

分析 (Ⅰ)若n=19,結(jié)合題意,可得y與x的分段函數(shù)解析式;
(Ⅱ)由柱狀圖分別求出各組的頻率,結(jié)合“需更換的易損零件數(shù)不大于n”的頻率不小于0.5,可得n的最小值;
(Ⅲ)分別求出每臺(tái)都購(gòu)買19個(gè)易損零件,或每臺(tái)都購(gòu)買20個(gè)易損零件時(shí)的平均費(fèi)用,比較后,可得答案.

解答 解:(Ⅰ)當(dāng)n=19時(shí),
y=$\left\{\begin{array}{l}19×200,x≤19\\ 19×200+(x-19)×500,x>19\end{array}\right.$=$\left\{\begin{array}{l}3800,x≤19\\ 500x-5700,x>19\end{array}\right.$
(Ⅱ)由柱狀圖知,更換的易損零件數(shù)為16個(gè)頻率為0.06,
更換的易損零件數(shù)為17個(gè)頻率為0.16,
更換的易損零件數(shù)為18個(gè)頻率為0.24,
更換的易損零件數(shù)為19個(gè)頻率為0.24
又∵更換易損零件不大于n的頻率為不小于0.5.
則n≥19 
∴n的最小值為19件;
 (Ⅲ)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買19個(gè)易損零件,
所須費(fèi)用平均數(shù)為:$\frac{1}{100}$(70×19×200+4300×20+4800×10)=4000(元)
 假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買20個(gè)易損零件,
所須費(fèi)用平均數(shù)為$\frac{1}{100}$(90×4000+10×4500)=4050(元)
∵4000<4050 
∴購(gòu)買1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買19臺(tái)易損零件.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,頻率分布條形圖,方案選擇,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為( 。
A.20πB.24πC.28πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=xea-x+bx,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=(e-1)x+4,
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)(1+2i)(a+i)的實(shí)部與虛部相等,其中a為實(shí)數(shù),則a=( 。
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)向量$\overrightarrow{a}$=(x,x+1),$\overrightarrow$=(1,2),且$\overrightarrow{a}$⊥$\overrightarrow$,則x=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若復(fù)數(shù)z滿足2z+$\overline{z}$=3-2i,其中i為虛數(shù)單位,則z=(  )
A.1+2iB.1-2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x3-1;當(dāng)-1≤x≤1時(shí),f(-x)=-f(x);當(dāng)x>$\frac{1}{2}$時(shí),f(x+$\frac{1}{2}$)=f(x-$\frac{1}{2}$).則f(6)=( 。
A.-2B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)i為虛數(shù)單位,則復(fù)數(shù)(1+i)2=( 。
A.0B.2C.2iD.2+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=4tanxsin($\frac{π}{2}$-x)cos(x-$\frac{π}{3}$)-$\sqrt{3}$.
(1)求f(x)的定義域與最小正周期;
(2)討論f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案