6.設(shè)i為虛數(shù)單位,則復(fù)數(shù)(1+i)2=(  )
A.0B.2C.2iD.2+2i

分析 利用復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:(1+i)2=1+i2+2i=1-1+2i=2i,
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)$\overrightarrow{a}$,$\overrightarrow$是向量,則“|$\overrightarrow{a}$|=|$\overrightarrow$|”是“|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500元.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得如圖柱狀圖:

記x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),n表示購機(jī)的同時(shí)購買的易損零件數(shù).
(Ⅰ)若n=19,求y與x的函數(shù)解析式;
(Ⅱ)若要求“需更換的易損零件數(shù)不大于n”的頻率不小于0.5,求n的最小值;
(Ⅲ)假設(shè)這100臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買19個(gè)易損零件,或每臺(tái)都購買20個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺(tái)機(jī)器的同時(shí)應(yīng)購買19個(gè)還是20個(gè)易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在[-1,1]上隨機(jī)地取一個(gè)數(shù)k,則事件“直線y=kx與圓(x-5)2+y2=9相交”發(fā)生的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)a>0,|x-1|<$\frac{a}{3}$,|y-2|<$\frac{a}{3}$,求證:|2x+y-4|<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a為函數(shù)f(x)=x3-12x的極小值點(diǎn),則a=( 。
A.-4B.-2C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)是定義R上的周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=4x,則f(-$\frac{5}{2}$)+f(2)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},則A∩B=( 。
A.{1}B.{4}C.{1,3}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow{OA}$=(5,m),$\overrightarrow{OB}$=(2,-m),$\overrightarrow{OC}$=(6,-10),若A、B、C三點(diǎn)共線,則實(shí)數(shù)m等于(  )
A.6B.-6C.$\frac{4}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案