分析 (1)由同角三角函數(shù)的基本關(guān)系和根式的化簡可得;
(2)由誘導(dǎo)公式逐個化簡可得.
解答 解:(1)$\frac{\sqrt{1-2sin10°cos10°}}{cos10°-\sqrt{1-co{s}^{2}10°}}$
=$\frac{\sqrt{si{n}^{2}10°+co{s}^{2}10°-2sin10°cos10°}}{cos10°-\sqrt{si{n}^{2}10°}}$
=$\frac{\sqrt{(cos10°-sin10°)^{2}}}{cos10°-sin10°}$
=$\frac{cos10°-sin10°}{cos10°-sin10°}$=1;
(2)$\frac{sin(θ-5π)cos(-\frac{π}{2}-θ)cos(8π-θ)}{sin(θ-\frac{3π}{2})sin(-θ-4π)}$
=$\frac{sin(θ-π)cos(\frac{π}{2}+θ)cosθ}{sin(\frac{3π}{2}-θ)sinθ}$
=$\frac{-sinθ•(-sinθ)•cosθ}{-cosθ•sinθ}$
=-sinθ.
點評 本題考查三角函數(shù)化簡求值,涉及同角三角函數(shù)基本關(guān)系和誘導(dǎo)公式的應(yīng)用,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | △x+2 | B. | 2△x+(△x)2 | C. | △x+5 | D. | 3△x+(△x)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {sinnπ} | B. | {n2-9n+5} | C. | {$\frac{2n+1}{{n}^{2}}$} | D. | {$\frac{{n}^{2}}{{n}^{2}+1}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com