某單位準(zhǔn)備建造一間面積為50m2的背面靠墻的矩形平頂房屋,房屋墻的高度為4m,房屋正面的造價(jià)為800元/m2,房屋側(cè)面的造價(jià)為600元/m2,屋頂?shù)脑靸r(jià)為1000元/m2.若不計(jì)房屋背面的費(fèi)用,問(wèn)怎樣設(shè)計(jì)房屋能使造價(jià)最低,最低造價(jià)是多少元?(
3
≈1.732,造價(jià)精確到1元,長(zhǎng)度精確到0.01)
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:分別算出房子的兩個(gè)側(cè)面積乘以600再加上房子的正面面積乘以800再加上屋頂?shù)脑靸r(jià)即為總造價(jià),利用基本不等式求出函數(shù)的最小值,進(jìn)而得到答案.
解答: 解:設(shè)矩形小屋底面正面的邊長(zhǎng)為xm,則其側(cè)面邊長(zhǎng)為
50
x
m
那么矩形小屋的總造價(jià)y=4x•800+4×
50
x
×600×2+50000=3200(x+
75
x
)+50000
因?yàn)?200(x+
75
x
)+50000≥105424
當(dāng)且僅當(dāng)x=
75
x
,即x≈8.66時(shí)取等號(hào),
所以當(dāng)矩形小屋正面底邊為8.66米時(shí),總造價(jià)最低為105424元.
點(diǎn)評(píng):本題考查函數(shù)模型的構(gòu)建,考查基本不等式的運(yùn)用,正確構(gòu)建函數(shù)是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=|x+1|+|2x-a|的最小值為3,則實(shí)數(shù)a的值為( 。
A、4或-8B、-5或-8
C、1或-5D、1或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=
-
1
4
x2,0≤x≤2
-(
1
2
)x-
3
4
,x>2
,若關(guān)于x的方程[f(x)]2+af(x)+
7a
16
=0,a∈R有且僅有8個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-2
-b2+4b-3
•x,g(x)=x2(2a2-x2)(a∈N+,b∈Z),若存在x0,使f(x0)為f(x)的最小值,使g(x0)為g(x)的最大值,則此時(shí)數(shù)對(duì)(a,b)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是邊長(zhǎng)為2
3
的等邊三角形,p是以C為圓心,1為半徑的圓上的任意一點(diǎn),則
AP
BP
最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)容器為0.3L的水壺里灌滿一壺水,水的溫度為t1=3℃,由于散熱壺內(nèi)溫度每min下降t=0.2℃,為了保持壺內(nèi)溫度不變,可從水龍頭給它連續(xù)不斷地滴入溫度為t2=45℃的熱水,假設(shè)每滴熱水的質(zhì)量m=0.2g.問(wèn):每min應(yīng)滴入多少滴熱水才能維持壺內(nèi)水溫不變.(假設(shè)壺內(nèi)熱傳遞極快,熱水滴入后水溫很快達(dá)到一致,多余的水從壺嘴溢出,不計(jì)水壺的吸熱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
=(1,2),
b
=(3,1),且
a
a
b
垂直,則λ的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)之和為Sn,求通項(xiàng)公式:
(1)Sn=3n2-2n
(2)Sn=2n+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A(1,-2,x),B(x,3,0),C(7,x,6),且A,B,C三點(diǎn)能夠成直角三角形,求x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案