15.函數(shù)y=3-2cos($\frac{2}{3}$x+$\frac{π}{3}$)的最大值為5,此時(shí)自變量x的取值集合是{x|x=3kπ+π,k∈Z}.

分析 根據(jù)余弦函數(shù)的圖象與性質(zhì),即可求出函數(shù)y=3-2cos($\frac{2}{3}$x+$\frac{π}{3}$)的最大值以及取最大值時(shí)x的取值集合.

解答 解:∵-1≤cos($\frac{2}{3}$x+$\frac{π}{3}$)≤1,
∴當(dāng)cos($\frac{2}{3}$x+$\frac{π}{3}$)=-1時(shí),
函數(shù)y=3-2cos($\frac{2}{3}$x+$\frac{π}{3}$)取得最大值5;
此時(shí)$\frac{2}{3}$x+$\frac{π}{3}$=2kπ+π,k∈Z,
解得x=3kπ+π,k∈Z;
故所求的x集合為{x|x=3kπ+π,k∈Z}.
故答案為:5,{x|x=3kπ+π,k∈Z}.

點(diǎn)評 本題考查了余弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{DO}$=$\overrightarrow{OA}$,設(shè)x•$\overrightarrow{OA}$+$\overrightarrow{OB}$+y$\overrightarrow{OC}$=$\overrightarrow{0}$∈(x,y∈R),則x+y=( 。
A.-1B.1C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]時(shí),求函數(shù)y=f(x)的值域;
(3)若關(guān)于x的方程3•[f(x)]2+mf(x)-1=0在[-$\frac{π}{12}$,$\frac{5π}{12}$]上有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若$\sqrt{1-x}$+$\sqrt{2-y}$+$\sqrt{3-z}$=1,求x+y+z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\frac{x}{{e}^{x}}$,定義f1(x)=f′(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N,則fn(x)=$\frac{{{{(-1)}^n}(x-n)}}{e^x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題p:x>y是命題q:x-3>y-4的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.要把6名農(nóng)業(yè)技術(shù)員分到3個(gè)鄉(xiāng)支援工作,甲鄉(xiāng)需要2名,乙鄉(xiāng)需要3名,丙鄉(xiāng)需要1名,一共有多少種分配方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2+2x+2的圖象在點(diǎn)(x0,f(x0))處的切線與直線x+y+1=0垂直,則實(shí)數(shù)a的取值范圍為( 。
A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),過點(diǎn)A作準(zhǔn)線l的垂線,垂足為E,當(dāng)A點(diǎn)的坐標(biāo)為(3,y1)時(shí),△AEF為正三角形,則此時(shí)△OAB的面積為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案