分析 欲求正三棱錐的體積,先求正三棱錐的高,由題意,頂點在底面中的射影是底面的中心,從而利用側(cè)棱與底面所成角為45°角,可求底面邊長,從而得解.
解答 解:正三棱錐的高為h,由題意,頂點在底面中的射影是底面的中心,從而有高為h=$\frac{\sqrt{2}}{2}a$,底面邊長為:m,
$\frac{\sqrt{3}}{2}m=\frac{\sqrt{2}}{2}a×\frac{3}{2}$,m=$\frac{\sqrt{6}}{2}a$,SD=$\sqrt{(\frac{\sqrt{2}}{2}a)^{2}+(\frac{\sqrt{2}}{4}a)^{2}}$=$\frac{\sqrt{10}}{4}a$.
∴正三棱錐的體積等于 $\frac{1}{3}$×$\frac{\sqrt{3}}{4}$×$\frac{\sqrt{2}}{2}a$×$(\frac{\sqrt{6}}{2}a)^{2}$=$\frac{{a}^{3}}{8}$.
表面積:$\frac{\sqrt{3}}{4}×({\frac{\sqrt{6}}{2}a)}^{2}+3×\frac{1}{2}×\frac{\sqrt{6}}{2}a×\frac{\sqrt{10}}{4}a$=$\frac{3\sqrt{3}+3\sqrt{5}}{8}{a}^{2}$
點評 本題主要考查棱錐,線面關系、直線與平面所成的角、點到面的距離等基本知識,同時考查空間想象能力和推理、運算能力.在立體幾何中,求點到平面的距離是一個常見的題型,同時求直線到平面的距離、平行平面間的距離及多面體的體積也常轉(zhuǎn)化為求點到平面的距離.
科目:高中數(shù)學 來源: 題型:解答題
支持 | 保留 | 不支持 |
450 | 300 | 150 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $\frac{112}{27}$ | C. | 4或$\frac{112}{27}$ | D. | $\frac{112}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com