【題目】電容器充電后,電壓達到100 V,然后開始放電,由經(jīng)驗知道,此后電壓U隨時間t變化的規(guī)律用公式U=Aebt(b<0)表示,現(xiàn)測得時間t(s)時的電壓U(V)如下表:

t(s)

0

1

2

3

4

5

6

7

8

9

10

U(V)

100

75

55

40

30

20

15

10

10

5

5

試求:電壓U對時間t的回歸方程.(提示:對公式兩邊取自然對數(shù),把問題轉(zhuǎn)化為線性回歸分析問題)

【答案】.

【解析】

對表達式,兩邊同時取對數(shù),令y=ln U,a=ln A,x=t把非線性方程轉(zhuǎn)化為線性方程。根據(jù)題目的數(shù)據(jù)求解y,x的值,利用線性回歸方程中的的計算公式,得出線性回歸方程,再還原為非線性回歸方程。

對U=Aebt兩邊取對數(shù)得ln U=ln A+bt,令y=ln U,a=ln A,x=t,

則y=a+bx,得y與x的數(shù)據(jù)如下表:

x

0

1

2

3

4

5

6

7

8

9

10

y

4.6

4.3

4.0

3.7

3.4

3.0

2.7

2.3

2.3

1.6

1.6

根據(jù)表中數(shù)據(jù)作出散點圖,如圖所示,

從圖中可以看出,y與x具有較強的線性相關關系,

由表中數(shù)據(jù)求得=5,≈3.045,進而可以求得≈-0.313,=4.61.

所以y對x的線性回歸方程為y=4.61-0.313x.

由y=ln U,得U=ey,U=e4.61-0.313x=e4.16·e-0.313x.

因此電壓U對時間t的回歸方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某廠有容量300噸的水塔一個,每天從早六點到晚十點供應生活和生產(chǎn)用水,已知:該廠生活用水每小時10噸,工業(yè)用水總量W(噸)與時間t(單位:小時,規(guī)定早晨六點時t=0)的函數(shù)關系為W=100 ,水塔的進水量有10級,第一級每小時水10噸,以后每提高一級,進水量增加10噸.若某天水塔原有水100噸,在供應同時打開進水管.問該天進水量應選擇幾級,既能保證該廠用水(即水塔中水不空),又不會使水溢出?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex+bex﹣2asinx(a,b∈R).
(1)當a=0時,討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當b=﹣1時,若f(x)>0對任意x∈(0,π)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一臺機器由于使用時間較長,生產(chǎn)的零件有一些缺損.按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下表所示:

轉(zhuǎn)速x(轉(zhuǎn)/秒)

16

4

12

8

每小時生產(chǎn)有缺損零件數(shù)y(個)

11

9

8

5

(1)作出散點圖;

(2)如果yx線性相關,求出回歸直線方程;

(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么,機器的運轉(zhuǎn)速度應控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,O為坐標原點,點F為拋物線C1:x2=2py(p>0)的焦點,且拋物線C1上點M處的切線與圓C2:x2+y2=1相切于點Q.

(Ⅰ)當直線MQ的方程為 時,求拋物線C1的方程;
(Ⅱ)當正數(shù)p變化時,記S1 , S2分別為△FMQ,△FOQ的面積,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在(﹣∞,0)內(nèi)單調(diào)遞增的為(
A.y=x4+2x
B.y=2|x|
C.y=2x﹣2x
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學作為藍色海洋教育特色學校,隨機抽取100名學生,進行一次海洋知識測試,按測試成績(假設考試成績均在[65,90)內(nèi))分組如下:第一組[65,70),第二組 [70,75),第三組[75,80),第四組 [80,85),第五組 [85,90).得到頻率分布直方圖如圖C34.

(1)求測試成績在[80,85)內(nèi)的頻率;

(2)從第三、四、五組學生中用分層抽樣的方法抽取6名學生組成海洋知識宣講小組,定期在校內(nèi)進行義務宣講,并在這6名學生中隨機選取2名參加市組織的藍色海洋教育義務宣講隊,求第四組至少有1名學生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a>0,b>0,則稱 為a,b的調(diào)和平均數(shù).如圖,點C為線段AB上的點,且AC=a,BC=b,點O為線段AB中點,以AB為直徑做半圓,過點C作AB的垂線交半圓于D,連結OD,AD,BD.過點C作OD的垂線,垂足為E,則圖中線段OD的長度是a,b的算術平均數(shù),那么圖中表示a,b的幾何平均數(shù)與調(diào)和平均數(shù)的線段,以及由此得到的不等關系分別是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C: =1(a>b>0)的離心率為 ,以橢圓C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設圓T與橢圓C交于點M與點N.

(1)求橢圓C的方程;
(2)求 的最小值,并求此時圓T的方程;
(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:|OR||OS|為定值.

查看答案和解析>>

同步練習冊答案