精英家教網 > 高中數學 > 題目詳情

【題目】下列函數中,既是偶函數,又在(﹣∞,0)內單調遞增的為(
A.y=x4+2x
B.y=2|x|
C.y=2x﹣2x
D.

【答案】D
【解析】解:對于A,不是偶函數,不合題意; 對于B,x<0時,函數遞減,不合題意;
對于C,函數是奇函數,在(﹣∞,0)內單調遞減,不合題意,
對于D,函數是偶函數,x<0時,y=﹣log2(﹣x)﹣1,是增函數,符合題意,
故選:D.
【考點精析】認真審題,首先需要了解函數單調性的判斷方法(單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較),還要掌握函數的奇偶性(偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x+asinx在(﹣∞,+∞)上單調遞增,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,ABC中,,ABED是邊長為1的正方形,平面ABED⊥底面ABC,若G,F分別是EC,BD的中點.

(1)求證:GF∥底面ABC;

(2)求證:AC⊥平面EBC;

(3)求幾何體ADEBC的體積V.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班級數學興趣小組為了研究人的腳的大小與身高的關系,隨機抽測了20位同學,得到如下數據:

序號

1

2

3

4

5

6

7

8

9

10

身高x(厘米)

192

164

172

177

176

159

171

166

182

166

腳長y(碼)

48

38

40

43

44

37

40

39

46

39

序號

11

12

13

14

15

16

17

18

19

20

身高x(厘米)

169

178

167

174

168

179

165

170

162

170

腳長y(碼)

43

41

40

43

40

44

38

42

39

41

(Ⅰ)請根據“序號為5的倍數”的幾組數據,求出y關于x的線性回歸方程
(Ⅱ)若“身高大于175厘米”為“高個”,“身高小于等于175厘米”的為“非高個”;“腳長大于42碼”為“大碼”,“腳長小于等于42碼”的為“非大碼”.請根據上表數據完成2×2列聯(lián)表:并根據列聯(lián)表中數據說明能有多大的可靠性認為腳的大小與身高之間有關系?
(Ⅲ)若按下面的方法從這20人中抽取1人來核查測量數據的誤差:將一個標有1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數字的乘積為被抽取人的序號,求:抽到“無效序號(超過20號)”的概率.
附表及公式:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】電容器充電后,電壓達到100 V,然后開始放電,由經驗知道,此后電壓U隨時間t變化的規(guī)律用公式U=Aebt(b<0)表示,現測得時間t(s)時的電壓U(V)如下表:

t(s)

0

1

2

3

4

5

6

7

8

9

10

U(V)

100

75

55

40

30

20

15

10

10

5

5

試求:電壓U對時間t的回歸方程.(提示:對公式兩邊取自然對數,把問題轉化為線性回歸分析問題)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位員工人參加學雷鋒志愿活動,按年齡分組:第,第,,,,得到的頻率分布直方圖如圖所示.

1)下表是年齡的頻率分布表,求正整數的值;

區(qū)間






人數






2)現在要從年齡較小的第組中用分層抽樣的方法抽取人,年齡在第組抽取的員工的人數分別是多少?

3)在(2)的前提下,從這人中隨機抽取人參加社區(qū)宣傳交流活動,求至少有人年齡在第組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開式中x的系數恰好是數列{an}的前n項和Sn
(1)求數列{an}的通項公式;
(2)數列{bn}滿足 ,記數列{bn}的前n項和為Tn , 求證:Tn<1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸,長度單位相同,建立極坐標系,已知圓A的參數方程為 (其中θ為參數),圓B的極坐標方程為ρ=2sinθ.
(Ⅰ)分別寫出圓A與圓B的直角坐標方程;
(Ⅱ)判斷兩圓的位置關系,若兩圓相交,求其公共弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司經營一批進價為每件400元的商品,在市場調查時發(fā)現,此商品的銷售單價x(元)與日銷售量y(件)之間的關系如下表所示:

x/元

500

600

700

800

900

y/件

10

8

9

6

1

(1)求y關于x的回歸直線方程.

(2)借助回歸直線方程,預測銷售單價為多少元時,日利潤最大?

查看答案和解析>>

同步練習冊答案