【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每卦有三根線組成(“”表示一根陽線,“”表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有三根陽線和三根陰線的概率__________.
【答案】
【解析】
由圖可得:三根都是陽線的有一卦,三根都是陰線的有一卦,兩根陽線一根陰線的有三卦,兩根陰線一根陽線的有三卦,利用組合數(shù)可得基本事件總數(shù),分類利用計算原理求得符合要求的基本事件個數(shù)為10個,問題得解.
從八卦中任取兩卦,共有種取法
若兩卦的六根線中恰有三根陽線和三根陰線,可按取得卦的陽、陰線的根數(shù)分類計算;
當有一卦陽、陰線的根數(shù)為3、0時,另一卦陽、陰線的根數(shù)為0、3,共有種取法.
當有一卦陽、陰線的根數(shù)為2、1時,另一卦陽、陰線的根數(shù)為1、2,共有種取法.
所以兩卦的六根線中恰有三根陽線和三根陰線的取法有種.
則從八卦中任取兩卦,這兩卦的六根線中恰有三根陽線和三根陰線的概率為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水果經(jīng)銷商為了對一批剛上市水果進行合理定價,將該水果按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(元/公斤) | 16 | 17 | 18 | 19 | 20 |
日銷售量(公斤) | 168 | 146 | 120 | 90 | 56 |
(1)已知變量具有線性相關(guān)關(guān)系,求該水果日銷售量(公斤)關(guān)于試銷單價(元/公斤)的線性回歸方程,并據(jù)此分析銷售單價時,日銷售量的變化情況;
(2)若該水果進價為每公斤元,預(yù)計在今后的銷售中,日銷售量和售價仍然服從(1)中的線性相關(guān)關(guān)系,該水果經(jīng)銷商如果想獲得最大的日銷售利潤,此水果的售價應(yīng)定為多少元?
(參考數(shù)據(jù)及公式:,,,線性回歸方程,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(-1,0),設(shè)不垂直于x軸的直線l與拋物線y2=2x交于不同的兩點A、B,若x軸是∠APB的角平分線,則直線l一定過點
A. (,0) B. (1,0) C. (2,0) D. (-2,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請你設(shè)計一個包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得四個點重合于圖中的點,正好形成一個正四棱柱形狀的包裝盒,在上,是被切去的一個等腰直角三角形斜邊的兩個端點,設(shè)().
(1)某廣告商要求包裝盒的側(cè)面積最大,試問應(yīng)取何值?
(2)某廠商要求包裝盒的容積最大,試問應(yīng)取何值?并求出此時包裝盒的高與底面邊長的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校社團為調(diào)查學(xué)生課余學(xué)習(xí)圍棋的情況,隨機抽取了100名學(xué)生進行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖如圖所示,將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.
根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷能不能在犯錯誤的概率不超過0.05的前提下認為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 總計 | |
男 | |||
女 | 10 | 55 | |
總計 |
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小趙和小王約定在早上至之間到某公交站搭乘公交車去上學(xué),已知在這段時間內(nèi),共有班公交車到達該站,到站的時間分別為,,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學(xué)的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車公司對最近6個月內(nèi)的市場占有率進行了統(tǒng)計,結(jié)果如表;
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
市場占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)可用線性回歸模型擬合與之間的關(guān)系嗎?如果能,請求出關(guān)于的線性回歸方程,如果不能,請說明理由;
(2)公司決定再采購兩款車擴大市場, 兩款車各100輛的資料如表:
車型 | 報廢年限(年) | 合計 | 成本 | |||
1 | 2 | 3 | 4 | |||
10 | 30 | 40 | 20 | 100 | 1000元/輛 | |
15 | 40 | 35 | 10 | 100 | 800元/輛 |
平均每輛車每年可為公司帶來收入元,不考慮采購成本之外的其他成本,假設(shè)每輛車的使用壽命部是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產(chǎn)生利潤的平均數(shù)作為決策依據(jù),應(yīng)選擇采購哪款車型?
參考數(shù)據(jù): ,,,.
參考公式:相關(guān)系數(shù);
回歸直線方程為,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
若是函數(shù)的極值點,求實數(shù)a的值;
若對任意的為自然對數(shù)的底數(shù),都有成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com