8.下列不等式中,正確的個(gè)數(shù)為(  )
①若x>0且x≠1,則$lnx+\frac{1}{lnx}≥2$;
②a2+b2+2≥2a+2b;
③${x^2}+\frac{1}{{{x^2}+1}}≥1$;
④若a>0,b>0,則$\frac{a^2}+\frac{b^2}{a}≥a+b$;
⑤任意的x>0,都有ex>x+1.
A.1B.2C.3D.4

分析 利用題意結(jié)合不等式的性質(zhì)和函數(shù)的性質(zhì)逐一考查所給的不等式即可求得最終結(jié)果.

解答 解:逐一考查所給的不等式:
①當(dāng)$x=\frac{1}{e}$ 時(shí),$lnx+\frac{1}{lnx}=-2<2$,該命題錯(cuò)誤;
②(a2+b2+2)-(2a+2b)=(a-1)2+(b-1)2≥0,
則a2+b2+2≥2a+2b,該命題正確;
③x2+1≥1,則${x}^{2}+\frac{1}{{x}^{2}+1}=({x}^{2}+1)+\frac{1}{{x}^{2}+1}-1≥1+\frac{1}{1}-1=1$,該命題正確;
④$\frac{{a}^{2}}+\frac{^{2}}{a}-(a+b)=(\frac{{a}^{2}}-\frac{^{2}})+(\frac{^{2}}{a}-\frac{{a}^{2}}{a})=\frac{(a+b){(a-b)}^{2}}{ab}≥0$,
則 $\frac{{a}^{2}}+\frac{^{2}}{a}≥a+b$,該命題正確;
⑤函數(shù)y=ex在x=0處的切線方程為y=x+1,結(jié)合函數(shù)y=ex和y=x+1的圖象可得:
任意的x>0,都有ex>x+1,該命題正確;
綜上可得:不等式中,正確的個(gè)數(shù)為4個(gè).
故選:D.

點(diǎn)評(píng) 本題考查均值不等式的性質(zhì),代數(shù)式比較大小的方法,導(dǎo)函數(shù)研究函數(shù)的切線,數(shù)形結(jié)合的思想等,重點(diǎn)考查學(xué)生對(duì)基礎(chǔ)概念的理解和計(jì)算能力,屬于中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.Rt△ABC,A(-1,3),B(4,2),C點(diǎn)在x軸上,求C點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx-ax2-x.
(1)若a=$\frac{1}{2}$,令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)若f(x)在(0,+∞)上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)f(x)設(shè)為偶函數(shù),且在(-∞,0)內(nèi)是減函數(shù),f(-3)=0,則不等式f(x)<0的解集為(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-1,g(x)=x+1.
(1)求函數(shù)F(x)=f(x)+|g(x)|在區(qū)間[-2,0]上的值域.
(2)若當(dāng)x∈R時(shí),不等式f(x)≥λg(x)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a∈R,函數(shù)f(x)=ex+ae-x,其導(dǎo)函數(shù)f'(x)是奇函數(shù).若曲線y=f(x)的一條切線的斜率為$\frac{3}{2}$,則切點(diǎn)的坐標(biāo)為$(ln2,\frac{5}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過點(diǎn)$A({1,\frac{3}{2}})$,C的四個(gè)頂點(diǎn)構(gòu)成的四邊形面積為$4\sqrt{3}$.
(1)求橢圓C的方程;
(2)在橢圓C上是否存在相異兩點(diǎn)E,F(xiàn),使其滿足:①直線AE與直線AF的斜率互為相反數(shù);②線段EF的中點(diǎn)在y軸上.若存在,求出∠EAF的平分線與橢圓相交所得弦的弦長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex-ax-1.
(1)當(dāng)a=e時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意x≥0都有f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證:e${\;}^{1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}}$>n+1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=(x2-mx-m)e2+2m(m∈R).
(Ⅰ)若函數(shù)f(x)在x=0處取得根值,求m的值和函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的不等式f(x)>0在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案