10.若x,y滿足約束條件$\left\{\begin{array}{l}{2x+2y≥1}\\{x≥y}\\{2x-y≤1}{\;}\end{array}\right.$,則目標函數(shù)z=6x-2y的最大值是( 。
A.1B.3C.4D.8

分析 作出不等式組對應的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:作出不等式組對應的平面區(qū)域如圖:
由z=6x-2y得y=3x-$\frac{z}{2}$,
平移直線y=3x-$\frac{z}{2}$,由圖象可知當直線y=3x-$\frac{z}{2}$經(jīng)過點A時,
直線y=3x-$\frac{z}{2}$的截距最小,此時z最大,
由$\left\{\begin{array}{l}{x=y}\\{2x-y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
即A(1,1),
此時z=6×1-2×1=4,
故選:C.

點評 本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.將長為l的鐵絲剪成兩段,分別圍成長與寬之比為2:1及3:2的矩形,那么面積的和的最小值為$\frac{3}{104}{l^2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某算法的程序框圖如圖所示,其中輸入的變量z在1,2,3,…,36這36個整數(shù)中等可能隨機產(chǎn)生,則按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=l,2,3)分別為(  )
A.$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{6}$B.$\frac{1}{6}$,$\frac{1}{2}$,$\frac{1}{3}$C.$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{6}$D.$\frac{1}{2}$,$\frac{1}{6}$,$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.從裝有3個白球、2個紅球的袋中任取3個,則所取的3個球中至多有1個紅球的概率是( 。
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+3y-3≥0}\\{2x-y-3≤0}\\{x-y+1≥0}\\{\;}\end{array}\right.$.
(Ⅰ)求目標函數(shù)z=x+y的最大值;
(Ⅱ)求目標函數(shù)z=x2+y2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.一次測試中,為了了解學生的學習情況,從中抽取了n個學生的成績(滿分為100分)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中x,y的值;
(2)在選取的樣本中,從成績是80分以上(含80分)的同學中隨機抽取2名參加志愿者活動,所抽取的2名同學中得分都在[80,90)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=ax3+bx(a≠0),f(3)=2,則f(-3)=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設正態(tài)總體落在區(qū)間(-∞,-1)和區(qū)間(3,+∞)內(nèi)的概率相等,落在區(qū)間(-2,4)內(nèi)的概率為99.74%,求該正態(tài)總體對應的正態(tài)曲線的最高點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.一個容量為40的樣本數(shù)據(jù),分成8組,頻率分布直方圖矩形的面積分別x1,x2,…x8若這八個值中的任意兩個的積的和為$\frac{3}{8}$.則它們的平方和是$\frac{1}{4}$.

查看答案和解析>>

同步練習冊答案