17.小趙,小錢,小孫,小李四位同學(xué)被問到誰去過長城時,
小趙說:我沒去過;
小錢說:小李去過;
小孫說;小錢去過;
小李說:我沒去過.
假定四人中只有一人說的是假話,由此可判斷一定去過長城的是小錢.

分析 利用3人說真話,1人說假話,驗證即可.

解答 解:如果小趙去過長城,則小趙說謊,小錢說謊,不滿足題意;
如果小錢去過長城,則小趙說真話,小錢說謊,小孫,小李說真話,滿足題意;
故答案為:小錢.

點評 本題考查進(jìn)行簡單的合情推理,考查學(xué)生分析解決問題的能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.過點A(-1,1),B(1,3)且圓心在x軸上的圓的方程為( 。
A.(x+2)2+y2=10B.(x-2)2+y2=10C.x2+(y-2)2=2D.x2+(y+2)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖所示,在復(fù)平面內(nèi),復(fù)數(shù)z1和z2對應(yīng)的點分別是A和B,則復(fù)數(shù)z1•z2對應(yīng)的點在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ex+ax+b(a≠0,b≠0).
(Ⅰ)若函數(shù)f(x)的圖象在點(0,f(0))處的切線方程為y=2,求f(x)在區(qū)間[-2,1]上的最值;
(Ⅱ)若a=-b,試討論函數(shù)f(x)在區(qū)間(1,+∞)上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.平面直角坐標(biāo)系中,直線x-2y+3=0的一個方向向量是( 。
A.(1,2)B.(2,1)C.(1,-2)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.平面直角坐標(biāo)系中,與直線x-2y+3=0平行的一個向量是( 。
A.(1,2)B.(2,1)C.(1,-2)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為考察某藥物預(yù)防疾病的效果,用小白鼠進(jìn)行動物試驗,得到如表的列聯(lián)表:
患病未患病總計
服用藥213051
沒服用藥82634
總計295685
(Ⅰ)根據(jù)上表數(shù)據(jù),能否以90%的把握認(rèn)為藥物有效?
(Ⅱ)用分層抽樣方法從“服用藥”和“沒服用藥”兩類小白鼠中隨機(jī)抽取一個容量為5的樣本,再從該樣本中任取2只,求其中恰有1只小白鼠服用藥物的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$),f(0)=-$\frac{{\sqrt{3}}}{2}$,且函數(shù)f(x)圖象上的任意兩條對稱軸之間距離的最小值是$\frac{π}{2}$.
(I)求函數(shù)f(x)的解析式;
(II)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos(α+$\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個幾何體的三視圖如圖所示,若其正視圖、側(cè)視圖的輪廓都是邊長為1的菱形,俯視圖是邊長為1的正方形,則該幾何體的體積為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案