已知a=
1
3
+
2
,b=
1
3
-
2
,則a,b的等差中項為
 
考點:等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:利用等差中項公式求解.
解答: 解:∵a=
1
3
+
2
=
3
-
2
,b=
1
3
-
2
=
3
+
2
,
∴a,b的等差中項:
A=
a+b
2
=
3
-
2
+
3
+
2
2
=
3

故答案為:
3
點評:本題考查等差中項的求法,是基礎(chǔ)題,解題時要認真審題,注意等差中項公式的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖所示的程序框圖,若兩次輸入的x值分別是3π和-
π
3
,則兩次運行程序輸出的b值分別是( 。
A、1,
3
2
B、0,
3
2
C、-π,-
3
2
D、3π,-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊長分別為a,b,c,a=8,B=60°,C=75°,則b=( 。
A、4
6
B、4
3
C、4
2
D、
32
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合M={a,b,c},N={x|x⊆M},則下列關(guān)系正確的是(  )
A、M∈NB、N⊆M
C、M⊆ND、M=N

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,已知a1+a2=4,a2+a3=8,則a7等于(  )
A、7B、10C、13D、19

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則有( 。
A、f(-25)<f(80)<f(11)
B、f(11)<f(80)<f(-25)
C、f(-25)<f(11)<f(80)
D、f(80)<f(11)<f(-25)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求滿足下列條件的圓的方程
(1)求過點M(5,2),N(3,2)且圓心在直線y=2x-3上的圓的方程;
(2)過圓x2+y2-x+y-2=0和x2+y2=5的交點,且圓心在直線3x+4y-1=0上的圓的方程為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

非零實數(shù)x、y、z成等差數(shù)列,x+1、y、z與x、y、z+2均成等比數(shù)列,則y等于( 。
A、16B、14C、12D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,△ABC內(nèi)接于⊙O,其中AB為⊙O直徑,A(1,3),B(-3,0),C(1,0).
(1)請在x軸上找一點D,使得△BDA與△BAC相似(不包含全等),并求出點D的坐標;
(2)在(1)的條件下,如果P,Q分別是BA,BD上的動點,連接PQ,設(shè)BP=DQ=m.問是否存在這樣的m,使得△BPQ與△BDA相似?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案