分析 通過計算出數(shù)列前幾項的值,判斷該數(shù)列為周期數(shù)列,進而可得結(jié)論.
解答 解:∵${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}$且a1=2,
∴a2=$\frac{1+{a}_{1}}{1-{a}_{1}}$=$\frac{1+2}{1-2}$=-3,
a3=$\frac{1+{a}_{2}}{1-{a}_{2}}$=$\frac{1-3}{1+3}$=-$\frac{1}{2}$,
a4=$\frac{1+{a}_{3}}{1-{a}_{3}}$=$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$,
a5=$\frac{1+{a}_{4}}{1-{a}_{4}}$=$\frac{1+\frac{1}{3}}{1-\frac{1}{3}}$=2,
不難發(fā)現(xiàn)數(shù)列{an}是周期數(shù)列,
四個為一周期且最前四個乘積為$2×(-3)×(-\frac{1}{2})×\frac{1}{3}$=1,
∵2015=503×4+3,
∴數(shù)列{an}前2015項的積為:${1}^{503}×2×(-3)×(-\frac{1}{2})$=3,
故答案為:3.
點評 本題考查求數(shù)列的前n項的乘積,找出其周期是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com