分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出;
(2)利用等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)設(shè)等比數(shù)列前三項(xiàng)分別為a1,a2,a3,
則a1+1、a2+2、a3+2又成等差數(shù)列.
依題意得:$\left\{\begin{array}{l}{{a}_{1}{a}_{2}{a}_{3}=8}\\{2({a}_{2}+2)=({a}_{1}+1)({a}_{3}+2)}\end{array}\right.$,
即$\left\{\begin{array}{l}{{a}_{1}•{a}_{1}q•{a}_{1}{q}^{2}=8}\\{2({a}_{1}q+2)={a}_{1}+1+{a}_{1}{q}^{2}+2}\end{array}\right.$,
解之得$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$,或$\left\{\begin{array}{l}{{a}_{1}=4}\\{q=\frac{1}{2}}\end{array}\right.$(數(shù)列{an}為遞增等比數(shù)列,舍去),
∴數(shù)列{an}的通項(xiàng)公式:an=2n-1;
(2)由bn=an+2n得,bn=2n-1+2n,
∴Tn=b1+b2+…+bn=(20+2×1)+(21+2×2)+(22+2×3)+…+(2n-1+2n)
=(20+21+22+…+2n-1)+2(1+2+3+…+n)
=$\frac{{2}^{0}(1-{2}^{n})}{1-2}$+2×$\frac{n(n+1)}{2}$
=2n+n2+n-1.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com