A. | $\frac{q}{2}$ | B. | q2 | C. | $\sqrt{q}$ | D. | $\root{n}{q}$ |
分析 在等比數(shù)列{bn}中應(yīng)研究前n項(xiàng)的積為T(mén)n的開(kāi)n方的形式,類(lèi)比等差數(shù)列可得$\root{n}{{T}_{n}}$=b1($\sqrt{q}$)n-1.由此能求出其公比.
解答 解:∵在等差數(shù)列{an}中前n項(xiàng)的和為Sn的通項(xiàng),且寫(xiě)成了 $\frac{{S}_{n}}{n}$=a1+(n-1)×$\fracjyzthyo{2}$.
所以在等比數(shù)列{bn}中應(yīng)研究前n項(xiàng)的積為T(mén)n的開(kāi)n方的形式.
類(lèi)比可得$\root{n}{{T}_{n}}$=b1($\sqrt{q}$)n-1.其公比為$\sqrt{q}$.
故選:C.
點(diǎn)評(píng) 本題考查等比數(shù)列的公比的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2+$\frac{1}{4}$>x(x>0) | B. | x2+1≥2|x|(x∈R) | ||
C. | sinx+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z) | D. | $\frac{1}{{{x^2}+1}}$>1(x∈R) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 分析法 | B. | 綜合法 | C. | 間接證明法 | D. | 反證法 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com