18.已知|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$的坐標(biāo)為( 。
A.(1,2)或(-1,-2)B.(-1,-2)C.(2,1)D.(1,2)

分析 設(shè)出$\overrightarrow{a}$的坐標(biāo)表示,根據(jù)向量的模長(zhǎng)公式與向量共線的坐標(biāo)表示,列出方程組,即可求出$\overrightarrow{a}$的坐標(biāo).

解答 解:設(shè)$\overrightarrow{a}$=(x,y),
∵|$\overrightarrow{a}$|=$\sqrt{5}$,
∴x2+y2=5①,
又$\overrightarrow$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow$,
∴2x-y=0②,
由①、②組成方程組,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$,
所以$\overrightarrow{a}$的坐標(biāo)為(1,2)或(-1,-2).
故選:A.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)表示與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某校從高一年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測(cè)試成績(jī)分成6組:加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.已知高一年級(jí)共有學(xué)生600名,據(jù)此估計(jì),該模塊測(cè)試成績(jī)不少于60分的學(xué)生人數(shù)為( 。
A.588B.480C.450D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在等差數(shù)列{an}中,已知a1=20,前n項(xiàng)和為Sn且S8=S13,當(dāng)Sn取得最大時(shí)n的值為( 。
A.9B.10C.12D.10或11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=$\frac{1}{2}{x^2}$-2ax+lnx在(0,+∞)上不單調(diào),則a的取值范圍是( 。
A.a<-1或a>1B.a≤-1或a≥1C.a≥1D.a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.過(guò)點(diǎn)(1,0)且與直線x-2y+3=0垂直的直線方程是( 。
A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|φ|<$\frac{π}{2}$)一段圖象如圖所示.
(1)分別求出A,ω,φ并確定函數(shù)f(x)的解析式;
(2)求出f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若5個(gè)同學(xué)排成一排,其中甲、乙不相鄰的有72排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.解方程(2x+1)2-5(2x+1)+6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.有一段“三段論”推理是這樣的:因?yàn)橹笖?shù)函數(shù)y=ax(a>0且a≠1)在(0,+∞)上是增函數(shù),$y={({\frac{1}{2}})^x}$是指數(shù)函數(shù),所以$y={({\frac{1}{2}})^x}$在(0,+∞)上是增函數(shù).以上推理中( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.結(jié)論正確

查看答案和解析>>

同步練習(xí)冊(cè)答案