3.設(shè)函數(shù)f(x)=x2-ax+lnx(a∈R)在x=1時(shí)取得極值.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

分析 (1)由題意知函數(shù)f(x)的定義域?yàn)椋?,+∞),求導(dǎo)函數(shù),利用函數(shù)f(x)在x=1處取得極值,即f′(1)=0,可求a的值;
(2)由(1)可得f′(x),由導(dǎo)數(shù)的正負(fù),即可得到函數(shù)f(x)的單調(diào)區(qū)間.

解答 解:(1)∵f(x)=x2-ax+lnx(a∈R)在x=1時(shí)取得極值,
∴f′(x)=2x-a+$\frac{1}{x}$,
∴f′(1)=0,
∴2-a+1=0,
解得a=3;
(2)∵f′(x)=2x-3+$\frac{1}{x}$=$\frac{2{x}^{2}-3x+1}{x}$=$\frac{(x-1)(2x-1)}{x}$,
令f′(x)>0,解得0<x$<\frac{1}{2}$,或x>1,
令f′(x)<0,解得$\frac{1}{2}$<x<1,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,$\frac{1}{2}$),(1,+∞)單調(diào)遞減區(qū)間為($\frac{1}{2}$,1)

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的極值與單調(diào)性,正確求導(dǎo)是關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.某學(xué)校為調(diào)查高中三年級(jí)男生的身高情況,選取了500名男生作為樣本,如圖是此次調(diào)查統(tǒng)計(jì)的流程圖,若輸出的結(jié)果是380,則身高在170cm以下的頻率為0.24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$,g(x)=$\frac{1}{f(x)-a}$,若g(2x)-a•g(x)=0有唯一實(shí)數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求|x-1|+|2x-1|+|3x-1|+…+|2015x-1|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求證:|$\frac{{a}^{2}-^{2}}{a}$|≥|a|-|b|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x2-alnx在[1,+∞)是增函數(shù).
(1)求a的取值范圍;
(2)當(dāng)a=2,b>-1時(shí),若對(duì)于任意的x∈(0,1],都有f(x)≥2bt-$\frac{1}{{t}^{2}}$在t∈(0,1]上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.海水受日月的引力,在一定的時(shí)候發(fā)生漲落的現(xiàn)象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時(shí)駛進(jìn)航道,靠近碼頭;卸貨后,在落潮時(shí)返回海洋.下面是某港口在某季節(jié)每天時(shí)間與水深(單位:米)的關(guān)系表:
時(shí)刻0:003:006:009:0012:0015:0018:0021:0024:00
水深10.013.09.97.010.013.010.17.010.0
(1)請(qǐng)用一個(gè)函數(shù)來(lái)近似描述這個(gè)港口的水深y與時(shí)間t的函數(shù)關(guān)系;
(2)一般情況下,船舶航行時(shí),船底離海底的距離為5米或5米以上認(rèn)為是安全的(船舶?繒r(shí),船底只要不碰海底即可).某船吃水深度(船底離地面的距離)為6.5米.
Ⅰ)如果該船是旅游船,1:00進(jìn)港希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長(zhǎng)時(shí)間(忽略進(jìn)出港所需時(shí)間)?
Ⅱ)如果該船是貨船,在2:00開(kāi)始卸貨,吃水深度以每小時(shí)0.5米的速度減少,由于臺(tái)風(fēng)等天氣原因該船必須在10:00之前離開(kāi)該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點(diǎn)時(shí)刻必須停止卸貨(忽略出港所需時(shí)間)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,三棱柱ABC-A1B1C1中,AA1⊥底面ABC,D是CC1的中點(diǎn),AC=BC,AB=AA1,二面角D-AB-C的大小為60°.
(Ⅰ)若點(diǎn)E在線段AB上,且CE⊥BD,證明:BE=2EA;
(Ⅱ)求二面角A1-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知關(guān)于x的方程loga(x-3)+1=loga(x+2)+loga(x-1)有實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案