9.已知a:b:c=1:$\sqrt{2}$:$\sqrt{3}$,試判斷三角形的形狀.

分析 根據(jù)題意,設(shè)a=t,b=$\sqrt{2}$t,c=$\sqrt{3}$t,分析可得c為最大邊,C為最大角,用余弦定理可求得cosC=0,進(jìn)而可得C=90°,即可得三角形為直角三角形的結(jié)論.

解答 解:根據(jù)題意,a:b:c=1:$\sqrt{2}$:$\sqrt{3}$,設(shè)a=t,b=$\sqrt{2}$t,c=$\sqrt{3}$t,
則c為最大邊,C為最大角,
cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=0,C=90°;
故三角形為直角三角形.

點評 本題考查余弦定理的運用,注意先分析出最大邊、最大角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足f(x+2)=$\frac{1}{2}$f(x),當(dāng)x∈[0,2)時,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2{x}^{2},0≤x<1}\\{-{2}^{1-|x-\frac{3}{2}|},1≤x<2}\end{array}\right.$,函數(shù)g(x)=(2x-x2)ex+m,若?x1∈[-4,-2),?x2∈[-1,2],使得不等式f(x1)-g(x2)≥0成立,則實數(shù)m的取值范圍是(  )
A.(-∞,-8]B.(-∞,$\frac{3}{e}$+8]C.[$\frac{3}{e}$-8,+∞)D.(-∞,$\frac{3}{e}$-8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:對于非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{a}$∥$\overrightarrow$是使得|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|成立的一個充分不必要條件;命題q:若$\overrightarrow{a}$,$\overrightarrow$是單位向量,則$\overrightarrow{a}•\overrightarrow$=1是$\overrightarrow{a}$=$\overrightarrow$的充要條件,則下列說法正確的是(  )
A.p∨q為假B.p∧q為真C.¬p∧q為假D.¬p∨q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=3sin(2x+$\frac{π}{3}$)+1.
(1)求f(x)的最小正周期T;
(2)當(dāng)x為何值時,f(x)取得最大值和最小值;
(3)求f(x)的對稱軸及對稱點;
(4)求f(x)的單調(diào)區(qū)間:
(5)求f(x)在[0,$\frac{π}{2}$]上的單調(diào)區(qū)間;
(6)當(dāng)x∈[0,$\frac{π}{2}$]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.log224+eln2-log49=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=$\sqrt{1-1nx}$的定義域是( 。
A.(-∞,e)B.(-∞,e]C.(0,e)D.(0,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.正四面體的四個頂點都在以原點O(0,0,0)為球心,半徑為1的球面上,已知該正四面體的一個頂點P的坐標(biāo)為(0,0,1),另一個頂點Q的坐標(biāo)為(m,n,p),則下列選項正確的是( 。
A.$\overrightarrow{OP}$與$\overrightarrow{OQ}$的夾角為120°B.m2+n2=p2
C.mn<0D.p<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知sinθ+cosθ=$\frac{1}{5}$,θ∈($\frac{π}{2}$,$\frac{3π}{4}$),求sinθ•cosθ,sin2θ,cos2θ,sinθ,cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.不等式lg(2x-1)-lg3<0的解集為($\frac{1}{2}$,2).

查看答案和解析>>

同步練習(xí)冊答案