14.函數(shù)f(x)=$\sqrt{1-1nx}$的定義域是( 。
A.(-∞,e)B.(-∞,e]C.(0,e)D.(0,e]

分析 根據(jù)題意,由函數(shù)的解析式可得1-lnx≥0且x>0,解可得x的取值范圍,即可得答案.

解答 解:根據(jù)題意,對(duì)于函數(shù)f(x)=$\sqrt{1-1nx}$,
有1-lnx≥0且x>0,
解可得0<x≤1,即f(x)的定義域?yàn)椋?,1];
故選:D.

點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的定義域,注意結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì)進(jìn)行分析.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.將三個(gè)半徑為3的球兩兩相切地放在水平桌面上,若在這三個(gè)球的上方放置一個(gè)半徑為1的小球,使得這四個(gè)球兩兩相切,則該小球的球心到桌面的距離為( 。
A.3$\sqrt{3}$B.2$\sqrt{3}$C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)在(0,+∞)為增函數(shù)的是(  )
A.y=$\frac{1}{x}$B.y=x2-xC.y=|lnx|D.y=ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)曲線C:x2+y2+2=2$\sqrt{3}$(|x|+|y|),則曲線C所圍封閉圖形的面積為$\frac{32π}{3}$+8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知a:b:c=1:$\sqrt{2}$:$\sqrt{3}$,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x2+ax+2,x∈[-3,3]
(1)a=-1,求f(x)的最大與最小值;
(2)a∈R,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=x+b-2-$\sqrt{2x-{x}^{2}}$,若方程|f(x)|=1有且僅有3個(gè)不等實(shí)根,則實(shí)數(shù)b的取值范圍是( 。
A.[1,$\sqrt{2}$)B.[0,$\sqrt{2}$-1]C.[$\sqrt{2}$-1,1)D.[$\sqrt{2}$-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知直線y=kx+b與橢圓$\frac{{x}^{2}}{4}$+y2=1交于A,B兩點(diǎn),記△AOB的面積為S(O是坐標(biāo)原點(diǎn))
(1)求橢圓的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.下列說(shuō)法中錯(cuò)誤的序號(hào)是④.
①若函數(shù)f(x)=ax2+(2a+b)x+2,x∈[2a-1,a+4]是偶函數(shù),則b=2;
②函數(shù)f(x)=$\sqrt{{x^2}-2015}-\sqrt{2015-{x^2}}$既是奇函數(shù)又是偶函數(shù);
③已知f(x)是R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=x(1+x),則當(dāng)x∈R時(shí),f(x)=x(1+|x|);
④已知f(x)是R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí)f(x)單調(diào)遞增,則f(x)在R上為增函數(shù);
⑤已知f(x)是定義在R上不恒為零的函數(shù),且對(duì)?x,y∈R都滿(mǎn)足f(x•y)=xf(y)+yf(x),則f(x)是奇函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案