2.已知cos2θ=$\frac{\sqrt{2}}{4}$,則sin4θ-cos4θ的值為-$\frac{\sqrt{2}}{4}$.

分析 根據題意,由余弦的二倍角公式可得cos2θ=cos2θ-sin2θ=$\frac{\sqrt{2}}{4}$,將sin4θ-cos4θ變形可得sin4θ-cos4θ=-(cos2θ-sin2θ),兩者聯(lián)立即可得答案.

解答 解:根據題意,cos2θ=$\frac{\sqrt{2}}{4}$,則cos2θ-sin2θ=$\frac{\sqrt{2}}{4}$,
而sin4θ-cos4θ=(sin2θ+cos2θ)(sin2θ-cos2θ)=-(cos2θ-sin2θ)=-$\frac{\sqrt{2}}{4}$,
即sin4θ-cos4θ=-$\frac{\sqrt{2}}{4}$,
故答案為:-$\frac{\sqrt{2}}{4}$.

點評 本題考查余弦二倍角公式以及同角三角函數(shù)基本關系式的運用,關鍵是將sin4θ-cos4θ恒等變形,與cos2θ建立關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.在數(shù)列{an}中,Sn=2n+1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{4}{3}$-$\frac{1}{{2}^{n-1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知對稱中心為原點O的橢圓C的上頂點為A,右焦點為F,B($\frac{4}{3}$,$\frac{3}$)是C上的一點,且橢圓C的離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的方程;
(2)若P、Q是橢圓C上異于頂點的兩動點,且∠POQ=90°,求證:直線PQ與一定圓相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.銳角△ABC中,a+b=2c(cosA+cosB)且c=$\sqrt{3}$,則ab的取值范圍是(0,3$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設x>0,y>0,下列各式中正確的是( 。
A.ln(x+y)=lnx+lnyB.$\frac{lgx}{lgy}$=lg$\frac{x}{y}$C.lg$\frac{x}{y}$=lgx-lgyD.lg(xy)=lgx•lgy

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若函數(shù)f(x)=x2log2(x+$\sqrt{x^2+m}$)為奇函數(shù),則m=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知圓(x-m)2+y2=4上存在兩點關于直線x-y-2=0對稱,若離心率為$\sqrt{2}$的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與圓相交,則它們的交點構成的圖形的面積為( 。
A.1B.$\sqrt{3}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={0,1,2},B={y|y=2x,x∈A},則A∪B中的元素個數(shù)為(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an}的前n項和sn,滿足sn=n(n-6),數(shù)列{bn}滿足${b_2}=3,{b_{n+1}}=3{b_n}(n∈{N^*})$
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)記數(shù)列{cn}滿足${c_n}=\left\{{\begin{array}{l}{{a_n},n為奇數(shù)}\\{{b_n},n為偶數(shù)}\end{array}}\right.$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案