【題目】某工廠生產(chǎn),,三種紀念品,每種紀念品均有普通型和精品型兩種,某一天產(chǎn)量如下表(單位:個):

普通型

精品型

紀念品

800

200

紀念品

150

紀念品

500

350

現(xiàn)采用分層抽樣的方法在這一天生產(chǎn)的紀念品中抽取100個,其中有種紀念品40.

1)若再用分層抽樣的方法在所有種紀念品中抽取一個容量為13的樣本.將該樣本看成一個總體,從中任取2個紀念品,求至少有1個精品型紀念品的概率(用最簡分數(shù)表示);

2)從種精品型紀念品中抽取6個,其某種指標的數(shù)據(jù)分別如下:47,,,85.把這6個數(shù)據(jù)看作一個總體,其均值為7、方差為6,求的值.

【答案】1;(2

【解析】

1)先由抽樣比算出n,進一步得到13個樣本中精品型的個數(shù),再利用古典概型的概率計算公式計算即可;

2)利用平均數(shù)、方差可得,進一步得到,代入中計算即可.

1)由已知,,解得

種紀念品中抽取一個容量為13的樣本中,精品型有個,

13個紀念品中任取2個有中不同結(jié)果,無精品型有種不同結(jié)果,

所以至少有1個精品型紀念品的概率為.

2)由題意,,所以

所以,即

所以,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列,中,已知,,且,成等差數(shù)列,,也成等差數(shù)列.

求證:是等比數(shù)列;

設(shè)m是不超過100的正整數(shù),求使成立的所有數(shù)對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市有一面積為12000平方米的三角形地塊,其中邊長為200米,現(xiàn)計劃建一個如圖所示的長方形停車場,停車場的四個頂點都在的三條邊上,其余的地面全部綠化.若建停車場的費用為180/平方米,綠化的費用為60/平方米,設(shè)米,建設(shè)工程的總費用為.

1)求關(guān)于的函數(shù)表達式:

2)求停車場面積最大時的值,并求此時的工程總費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,8人中選出5人排成一排.

1必須在內(nèi),有多少種排法?

2,三人不全在內(nèi),有多少種排法?

3,,都在內(nèi),且,必須相鄰,,都不相鄰,都多少種排法?

4不允許站排頭和排尾,不允許站在中間(第三位),有多少種排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公差不為零的等差數(shù)列中,,,成等比數(shù)列,且該數(shù)列的前10項和為100,數(shù)列的前n項和為,且滿足

求數(shù)列,的通項公式;

,數(shù)列的前n項和為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的首項為1..

1)若為常數(shù)列,求的值:

2)若為公比為2的等比數(shù)列,求的解析式:

3)是否存在等差數(shù)列,使得對一切都成立?若存在,求出數(shù)列的通項公式:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有10個除顏色外完全一樣的黑球和白球,已知從袋中任意摸出2個球,至少得到1個白球的概率是.

1)求白球的個數(shù);

2)從袋中任意摸出3個球,記得到白球的個數(shù)為X,求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為,已知

(1)求角;

(2)如圖,D為△ABC外一點,若在平面四邊形ABCD中,,求△ACD面積的最大值.

查看答案和解析>>

同步練習冊答案