在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù),).
(1)化曲線的極坐標(biāo)方程為直角坐標(biāo)方程;
(2)若直線經(jīng)過(guò)點(diǎn),求直線被曲線截得的線段的長(zhǎng).

(1)  ;(2)8

解析試題分析:(1)極坐標(biāo)化為直角坐標(biāo)的基本公式是,本小題要在極坐標(biāo)方程的兩邊乘以一個(gè).再根據(jù)基本轉(zhuǎn)化公式,即可化簡(jiǎn).
(2)解(一)將直線的參數(shù)方程化為直角方程,在聯(lián)立拋物線方程,消去y即可得到一個(gè)關(guān)于x的一元二次方程,從而利用韋達(dá)定理,以及弦長(zhǎng)公式求出弦長(zhǎng).解(二)由直線的參數(shù)方程與拋物線方程聯(lián)立.再根據(jù)弦長(zhǎng)公式,利用韋達(dá)定理即可求出弦長(zhǎng).
試題解析:解法(一):(1)由,即曲線C的直角坐標(biāo)方程為.
(2)由直線經(jīng)過(guò)點(diǎn)(1,0),得直線的直角坐標(biāo)系方程是,聯(lián)立,消去y,得,又點(diǎn)(1,0)是拋物線的焦點(diǎn),由拋物線定義,得弦長(zhǎng)=6+2=8.
解法(二):(1)同解法一.
(2)由直線經(jīng)過(guò)點(diǎn)(1,0),得,直線的參數(shù)方程為將直線的參數(shù)方程代入,得,所以.
考點(diǎn):1.極坐標(biāo)方程.2.參數(shù)方程.3.直線與拋物線的弦長(zhǎng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A,B,C是橢圓W:+y2=1上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(1)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知橢圓=1(ab>0)的右焦點(diǎn)為F2(1,0),點(diǎn)A在橢圓上.

(1)求橢圓方程;
(2)點(diǎn)M(x0,y0)在圓x2y2b2上,點(diǎn)M在第一象限,過(guò)點(diǎn)M作圓x2y2b2的切線交橢圓于P、Q兩點(diǎn),問(wèn)||+||+||是否為定值?如果是,求出該定值;如果不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的焦點(diǎn)為雙曲線的一個(gè)焦點(diǎn),且兩條曲線都經(jīng)過(guò)點(diǎn).
(1)求這兩條曲線的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)在拋物線上,且它與雙曲線的左,右焦點(diǎn)構(gòu)成的三角形的面積為4,求點(diǎn) 的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形F1B1 F2B2是一個(gè)面積為8的正方形.

(1)求橢圓C的方程;
(2)已知點(diǎn)P的坐標(biāo)為P(-4,0), 過(guò)P點(diǎn)的直線L與橢圓C相交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)G落在正方形內(nèi)(包含邊界)時(shí),求直線L的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C=1(a>b>0)的兩個(gè)焦點(diǎn)F1,F2和上下兩個(gè)頂點(diǎn)B1,B2是一個(gè)邊長(zhǎng)為2且∠F1B1F2為60°的菱形的四個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)F2的斜率為k(k≠0)的直線l與橢圓C相交于EF兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AF分別交直線x=3于點(diǎn)M,N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′,求證: k·k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△的兩個(gè)頂點(diǎn)的坐標(biāo)分別是,,且所在直線的斜率之積等于
(1)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(2)當(dāng)時(shí),過(guò)點(diǎn)的直線交曲線兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(不重合), 試問(wèn):直線軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓過(guò)點(diǎn),離心率為.
(1)求橢圓的方程;
(2)求過(guò)點(diǎn)且斜率為的直線被橢圓所截得線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓上的點(diǎn)到左右兩焦點(diǎn)的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過(guò)右焦點(diǎn)的直線交橢圓于兩點(diǎn),若軸上一點(diǎn)滿足,求直線的斜率的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案