A. | $y=\sqrt{3}x$ | B. | y=2x | C. | $y=±\sqrt{2}x$ | D. | $y=±\sqrt{3}x$ |
分析 設(shè)出一個(gè)虛軸端點(diǎn)為B(0,b)以及雙曲線的一條漸近線,根據(jù)點(diǎn)到直線的距離公式,建立方程關(guān)系,進(jìn)行求解即可.
解答 解:設(shè)雙曲線的一個(gè)虛軸端點(diǎn)為B(0,b),
雙曲線的一條漸近線為y=$\frac{a}$x,即bx-ay=0,
則點(diǎn)B到bx-ay=0的距離d=$\frac{|-ab|}{\sqrt{{a}^{2}+^{2}}}$=$\frac{ab}{c}$=$\frac{2}$,
即c=2a,則c2=4a2=a2+b2,
即3a2=b2,
即b=$\sqrt{3}$a,
則雙曲線的漸近線方程為y=±$\frac{a}$x=±$\sqrt{3}$x,
故選:D
點(diǎn)評 本題主要考查雙曲線漸近線的求解,根據(jù)點(diǎn)到直線的距離公式建立方程關(guān)系求出a,b的關(guān)系是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
男生 | 女生 | 合計(jì) | |
偏理科 | 28 | 16 | 44 |
偏文科 | 4 | 8 | 12 |
合計(jì) | 32 | 24 | 56 |
P(K2>k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.2 | B. | 0.4 | C. | 0.5 | D. | 0.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{1}{2})$ | B. | $(\frac{1}{4},\frac{1}{2})$ | C. | $(0,\frac{1}{4})$ | D. | $(\frac{1}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=($\sqrt{2}$)n-1 | B. | an=($\sqrt{2}$)n | ||
C. | an=$\left\{\begin{array}{l}{(\sqrt{2})^{n},n為奇數(shù)}\\{(\sqrt{2})^{n-1},n為偶數(shù)}\end{array}\right.$ | D. | an=$\left\{\begin{array}{l}{(\sqrt{2})^{n-1},n為奇數(shù)}\\{(\sqrt{2})^{n},n為偶數(shù)}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com