11.化簡(jiǎn)$\frac{{sin(α+π)cos(π-α)sin(\frac{5π}{2}-α)}}{tan(-α)cos(-α-2π)}$=-cos2α.

分析 直接利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)求值.

解答 解:$\frac{{sin(α+π)cos(π-α)sin(\frac{5π}{2}-α)}}{tan(-α)cos(-α-2π)}$
=$\frac{-sinα(-cosα)cosα}{-tanαcosα}$=$-\frac{sinαcosα}{tanα}=-co{s}^{2}α$.
故答案為:-cos2α.

點(diǎn)評(píng) 本題考查利用誘導(dǎo)公式化簡(jiǎn)求值,考查同角三角函數(shù)基本關(guān)系式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某大學(xué)生對(duì)自己課余時(shí)間所開(kāi)網(wǎng)店的某商品20天的日銷量統(tǒng)計(jì)如表:
售價(jià)(單位:元)232120
日銷量(單位:個(gè))101520
頻數(shù)4142
且此商品進(jìn)價(jià)均為每個(gè)15元.
(1)根據(jù)上表數(shù)據(jù),求這20天的日利潤(rùn)的平均數(shù)及方差;
(2)若該同學(xué)每晚18:30-21:30雇用一名同學(xué)做客服,預(yù)計(jì)日銷量可提高40%,但需支付客服每晚35元,問(wèn)增加客服后是否會(huì)提高日平均利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,矩形ABCD所在的平面和正方形ADD1A1所在的平面互相垂直,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).
(1)當(dāng)E為AB的中點(diǎn)時(shí),求點(diǎn)E到平面ACD1的距離;
(2)當(dāng)AE等于何值時(shí),二面角D1-EC-D的大小為$\frac{π}{4}$?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知命題p:?x∈R,使得x2+4x+6<0,則下列說(shuō)法正確的是(  )
A.¬p:?x∈R,使得x2+4x+6≥0,為真命題B.¬p:?x∈R,使得x2+4x+6≥0,為假命題
C.¬p:?x∈R,使得x2+4x+6≥0,為真命題D.¬p:?x∈R,使得x2+4x+6≥0,為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.有4個(gè)相同的紅包,分別裝有面值為5元、6元、8元和10元的紙幣,任取2個(gè)紅包,得到的錢數(shù)為偶數(shù)的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知雙曲線 C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的虛軸端點(diǎn)到一條漸近線的距離為$\frac{2}$,則雙曲線C漸近線方程為( 。
A.$y=\sqrt{3}x$B.y=2xC.$y=±\sqrt{2}x$D.$y=±\sqrt{3}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若雙曲線mx2+y2=1(m<-1)的離心率恰好是實(shí)軸長(zhǎng)與虛軸長(zhǎng)的等比中項(xiàng),則m=-7-4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知△ABC是邊長(zhǎng)為1的正三角形,動(dòng)點(diǎn)M在平面ABC內(nèi),若$\overrightarrow{AM}•\overrightarrow{AB}<0$,$|\overrightarrow{CM}|=1$,則$\overrightarrow{CM}•\overrightarrow{AB}$的取值范圍是[-1,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在直角坐標(biāo)系xOy中,直線l過(guò)點(diǎn)M(3,4),其傾斜角為45°,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ為參數(shù)),再以原點(diǎn)為極點(diǎn),以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系xoy有相同的長(zhǎng)度單位.
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)曲線C與直線l交于點(diǎn)A,B,求|MA|+|MB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案