分析 利用已知及三角形面積公式可求BC,利用余弦定理即可求得cosC的值,結(jié)合C的范圍即可得解.
解答 解:∵AB=$\sqrt{3}$,AC=1,∠B=30°,
∴△ABC的面積為$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$AB•BC•sinB=$\frac{1}{2}×\sqrt{3}×$BC×$\frac{1}{2}$,解得:BC=2,
∴由余弦定理可得:cosC=$\frac{A{C}^{2}+B{C}^{2}-A{B}^{2}}{2•AC•BC}$=$\frac{1+4-3}{2×1×2}$=$\frac{1}{2}$,
∵C∈(0,180°),
∴C=60°.
故答案為:60°.
點(diǎn)評(píng) 本題主要考查了三角形面積公式,余弦定理的綜合應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “充要” | B. | “充分不必要” | ||
C. | “必要不充分” | D. | “既不充分也不必要” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1] | B. | (-∞,-$\frac{5}{2}$] | C. | (-∞,-$\frac{9}{2}$] | D. | (-∞,-5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<c<a | B. | a<b<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | [0,2] | C. | [-2,0] | D. | [-2,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com