分析 半徑為2的半圓的弧長是2π,圓錐的底面周長等于側(cè)面展開圖的扇形弧長,因而圓錐的底面周長是2π,利用弧長公式計(jì)算底面半徑,即可求解圓錐的表面積.
解答 解:一個(gè)圓錐的母線長為2,它的側(cè)面展開圖為半圓,
圓的弧長為:2π,即圓錐的底面周長為:2π,
設(shè)圓錐的底面半徑是r,
則得到2πr=2π,
解得:r=1,
這個(gè)圓錐的底面半徑是1,
∴圓錐的表面積為:π•1•2+π•12=3π,
故答案為:3π.
點(diǎn)評 本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算.解題思路:解決此類問題時(shí)要緊緊抓住兩者之間的兩個(gè)對應(yīng)關(guān)系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=2-$\frac{1}{{2}^{n}}$ | B. | $\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$<1 | ||
C. | $\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=1 | D. | $\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12cm2 | B. | 15πcm2 | C. | 24πcm2 | D. | 36πcm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ω=$\frac{2π}{15}$,A=3 | B. | ω=$\frac{2π}{15}$,A=5 | C. | ω=$\frac{15π}{2}$,A=5 | D. | ω=$\frac{15π}{2}$,A=3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$) | B. | (-∞,1) | C. | (-∞,2) | D. | (-∞,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 1或2 | D. | 1或-2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com