Loading [MathJax]/jax/output/CommonHTML/jax.js
2.已知橢圓C的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,左焦點(diǎn)為F1(-1,0),離心率為12
(1)求橢圓C標(biāo)準(zhǔn)方程;
(2)分別以橢圓C的四個(gè)頂點(diǎn)作坐標(biāo)軸的垂線,圍成如圖所示的矩形,A,B是所圍成的矩形在x上方的兩個(gè)頂點(diǎn),若P,Q是橢圓C上兩個(gè)動(dòng)點(diǎn),直線OP,OQ與橢圓的另外交點(diǎn)分別為P1,Q1,且直線OP,OQ的斜率之積等于直線OA,OB的斜率之積,試求四邊形PQP1Q1的面積是否為定值,并說(shuō)明理由.

分析 (1)由已知可得c,再由離心率求得a,結(jié)合隱含條件求得b,則橢圓方程可求;
(2)設(shè)P(x1,y1),Q(x2,y2),通過(guò)斜率計(jì)算可得x12+x22=4,分x1=x2、x1≠x2兩種情況討論,利用點(diǎn)到直線的距離公式、三角形面積公式計(jì)算即得結(jié)論.

解答 解:(1)由題意,c=1,又e=ca=12,∴a=2.
則b2=a2-c2=4-1=3.
∴橢圓C的標(biāo)準(zhǔn)方程為x24+y23=1;
(2)結(jié)論:四邊形PQP1Q1的面積為定值43
理由如下:
由題意得:四條垂線的方程為:x=±2,y=±3,
則A(2,3),B(-2,3),
∴kOA•kOB=-34
設(shè)P(x1,y1),Q(x2,y2),則y1y2x1x2=-34(*)
PQ=x1x22+y1y22
∵點(diǎn)P、Q在橢圓C上,∴y12=31x124,y22=31x224,
將(*)式平方得:9x12x22=16y12y22=9(4-x12)(4-x22),即x12+x22=4,
①若x1=x2,則P、P1、Q、Q2分別是直線OA、OB與橢圓的交點(diǎn),
∴四個(gè)點(diǎn)的坐標(biāo)為:(2,62),(2,-62),(-2,62),(-2,-62),
∴四邊形PQP1Q1的面積為43;
②若x1≠x2,則直線PQ的方程可設(shè)為:y-y1=y2y1x2x1(x-x1),
化簡(jiǎn)得:(y2-y1)x-(x2-x1)y+x2y1-x1y2=0,
∴點(diǎn)O到直線PQ的距離為d=|x1y2x2y1|x2x12+y2y12
∴△OPQ的面積S=12PQ•d=12|x1y2-x2y1|
=12x12y222x1x2y1y2+x22y12=123x121x224+32x12x22+3x221x124
=123x12+x22=123×4=3
根據(jù)橢圓的對(duì)稱性,故四邊形PQP1Q1的面積為4S,即為定值43
綜上:四邊形PQP1Q1的面積為定值43

點(diǎn)評(píng) 本題是一道直線與圓錐曲線的綜合題,考查橢圓的標(biāo)準(zhǔn)方程、點(diǎn)的坐標(biāo)、點(diǎn)到直線的距離、三角形面積公式,韋達(dá)定理等基礎(chǔ)知識(shí),考查分類討論的思想,考查運(yùn)算求解能力,注意解題方法的積累,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}滿足a1=13,an+1=an2an+1nN
(1)求a2,a3,a4;
(2)是否存在正整數(shù)p,q使得對(duì)任意的n∈N*都有an=1pn+q,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)函數(shù)f(x)=xex,則函數(shù)f(x)的單調(diào)遞增區(qū)間為(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.點(diǎn)M到點(diǎn)F(2,0)的距離比它到直線x=-3的距離小1,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.(4x)′=-4x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)fx={sinπxx[20]3x+1x0,則y=f[f(x)]-4的零點(diǎn)為(  )
A.π2B.12C.32D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*
(1)證明數(shù)列{an-2n}是等差數(shù)列,并求{an}的通項(xiàng)公式
(2)設(shè)bn=an2n-1,求bn的前n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.化簡(jiǎn)|0.01|25803log32+lg22+lg2lg5+lg5的結(jié)果為-1.9999.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)f(x)是R上的可導(dǎo)函數(shù),且f′(x)≥-f(x),f(0)=1,f(2)=1e2.則f(1)的值為1e

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�