A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
分析 由|PQ|=1,△APF1的內切圓在邊PF1上的切點為Q,根據(jù)切線長定理,可得|PF1|-|PF2|=2,結合|F1F2|=6,即a=1,c=3,由離心率公式,可得出結論.
解答 解:由題意,∵|PQ|=1,△APF1的內切圓在邊PF1上的切點為Q,
如圖,根據(jù)切線長定理可得AM=AN,F(xiàn)1M=F1Q,PN=PQ,
∵|AF1|=|AF2|,
∴AM+F1M=AN+PN+NF2,
∴F1M=PN+NF2=PQ+PF2
∴|PF1|-|PF2|=F1Q+PQ-PF2=F1M+PQ-PF2=PQ+PF2+PQ-PF2=2PQ=2,
又|F1F2|=6,可得c=3,a=1.
∴雙曲線的離心率是e=$\frac{c}{a}$=3.
故選:A.
點評 本題考查雙曲線的離心率,考查三角形內切圓的性質,考查切線長定理,學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=±x | B. | y=±$\sqrt{2}$x | C. | y=±$\sqrt{3}$x | D. | y=±2$\sqrt{2}$x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ∅?P?M | B. | M?P?I | C. | M=∅ | D. | P=I且M≠P |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com