3.已知銳角△ABC中,角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(cosC+sinC,1),$\overrightarrow{n}$=$(cosC-sinC,\frac{1}{2})$,且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角C的大小;
(2)若c=3,求△ABC的面積的最大值.

分析 (1)由向量垂直得$cos2C=-\frac{1}{2}$,由此能求出解C.
(2)由余弦定理推導(dǎo)出ab≤9.由此能求出△ABC的面積的最大值.

解答 (12分)
解:(1)由題可知$\overrightarrow m•\overrightarrow n=(cosC+sinC)(cosC-sinC)+\frac{1}{2}=0$,…(2分)
所以$cos2C=-\frac{1}{2}$,…(3分)
因?yàn)?0<C<\frac{π}{2}$,所以$2C=\frac{2π}{3},即C=\frac{π}{3}$…(6分)
(2)由余弦定理可知c2=a2+b2-2abcosC,
即$9={a^2}+{b^2}-2abcos\frac{π}{3}={a^2}+{b^2}-ab$…(7分)
因?yàn)閍2+b2≥2ab,所以9=a2+b2-ab≥2ab-ab=ab,即ab≤9(當(dāng)且僅當(dāng)a=b時取等號),…(10分)
所以${S_{△ABC}}=\frac{1}{2}absinC≤\frac{1}{2}×9×\frac{{\sqrt{3}}}{2}=\frac{{9\sqrt{3}}}{4}$,
即△ABC的面積的最大值為$\frac{{9\sqrt{3}}}{4}$.  …(12分)

點(diǎn)評 本題考查角的大小的求法,考查余弦定理、三角形面積公式、向量垂直等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f'(x)是函數(shù)f(x)的導(dǎo)函數(shù),且滿足:①$\frac{f(x)-f'(x)}{x-1}>0$;
②exf(1-x)-e-xf(1+x)=0,設(shè) a=ef(1),b=f(2),c=e3f(-1).
則a,b,c的大小順序是a>b>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足:a1=1,${a_{n+1}}={a_n}+\frac{{{a_n}^2}}{{{{(n+1)}^2}}}$(n∈N*
(Ⅰ)求證:an≥1;
(Ⅱ)證明:$\frac{{a}_{n+1}}{{a}_{n}}$≥1+$\frac{1}{(n+1)^{2}}$
(Ⅲ)求證:$\frac{2(n+1)}{n+3}$<an+1<n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知一個邊長為2a的正方形及其內(nèi)切圓,隨機(jī)地向該正方形內(nèi)丟一粒豆子,則豆子落入圓內(nèi)的概率為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,若a=1,A=60°,B=45°,則b=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l1的方程是y=$\sqrt{3}$x+2.
(Ⅰ)求直線l1在x軸上的截距;
(Ⅱ)若直線l2過點(diǎn)A(2,-3),并且直線l2的傾斜角是直線l1的傾斜角的2倍,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=$\frac{2}{x}$+ln x,則f(x)的極小值為( 。
A.1B.2C.1+ln2D.2+ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.
(1)求a、b的值;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在區(qū)間[0,π]上隨機(jī)取一個數(shù),使函數(shù)y=cosx的函數(shù)值落在$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$上的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步練習(xí)冊答案