已知(1-2x)n(n∈N*)的展開式的偶數(shù)項的二項式系數(shù)和為32.
(Ⅰ)求n的值;
(Ⅱ)設(shè)(1-2x)n=a0+a1x+a2x2+…+anxn(n∈N*),求a1+a2+a3+…+an的值.
考點:二項式系數(shù)的性質(zhì),二項式定理的應(yīng)用
專題:二項式定理
分析:(Ⅰ)由題意可得 2n-1=32,由此求得n的值.
(Ⅱ)在所給的等式中,令x=0,可得a0=1.再令x=1可得a0+a1+a2+a3+…+a6=1,從而求得a1+a2+a3+…+an =a1+a2+a3+…+a6 的值.
解答: 解:(Ⅰ)由題意可得 2n-1=32,∴n=6.
(Ⅱ)∵(1-2x)n=(1-2x)6=a0+a1x+a2x2+…+a6x6 ,
令x=0,可得a0=1.
再令x=1可得a0+a1+a2+a3+…+a6=1,∴a1+a2+a3+…+an =a1+a2+a3+…+a6=0.
點評:本題主要考查二項式定理的應(yīng)用,是給變量賦值的問題,關(guān)鍵是根據(jù)要求的結(jié)果,選擇合適的數(shù)值代入,屬于基題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l在兩坐標(biāo)軸上的截距相等,且點A(1,3)到直線l的距離為
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(π-α)=
3
5
,α∈(
π
2
,π).
(1)求cos(π+α)的值;
(2)求tan(π-α)的值;
(3)求sin2α+cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,矩陣A=
-a1
2b
所對應(yīng)的變換將直線x+y-1=0變換為自身.
①求a,b的值;
②求矩陣A的逆矩陣A-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,PA⊥平面ABC,DC∥PA,且DC=AC=2PA=2,E是BD的中點.
(Ⅰ)求證:AE⊥BC;
(Ⅱ)求點D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2+bx+c<0的解集為{x|1<x<2}
(1)求b和c的值;
(2)求不等式cx2+bx+1≥0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-6x+5,x∈R
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若直線y=a與y=f(x)的圖象有三個不同的交點,求實數(shù)a的取值范圍;
(3)已知當(dāng)x∈(1,+∞)時,f(x)≥k(x-1)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y,m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
(Ⅰ)若x-1比1遠(yuǎn)離0,求x的取值范圍;
(Ⅱ)對任意兩個不相等的正數(shù)a,b,證明:
a2+b2
2
比(
a+b
2
2遠(yuǎn)離0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(
π
2
+x)cos(
π
6
-x)的最小正周期為
 

查看答案和解析>>

同步練習(xí)冊答案