設(shè)函數(shù)f(x)=
x2+1
-ax(a>0),求a的取值范圍,使函數(shù)f(x)在(0,+∞)上是單調(diào)函數(shù).
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求f′(x),討論a的取值,并判斷f′(x)的符號,從而判斷出f(x)在(0,+∞)上的單調(diào)性,找出使f(x)在(0,+∞)上是單調(diào)函數(shù)的a的取值范圍即可.
解答: 解:f′(x)=
x
x2+1
-a=
(1-a2)x2-a2
x2+1
(x+a
x2+1
)
;
①若a=1,則在(0,+∞)上f′(x)<0,所以滿足f(x)在(0,+∞)上是單調(diào)函數(shù);
②若a>1,1-a2<0,則在(0,+∞)上f′(x)=
(1-a2)(x2-
a2
1-a2
)
x2+1
(x+a
x2+1
)
<0
,滿足f(x)在(0,+∞)上是單調(diào)函數(shù);
③若0<a<1,1-a2>0,則在(0,+∞)上f′(x)>0,或f′(x)<0,即f(x)在(0,+∞)上沒有單調(diào)性;
∴綜上得a的取值范圍為[1,+∞).
點(diǎn)評:考查根據(jù)函數(shù)導(dǎo)數(shù)符號判斷函數(shù)單調(diào)性的方法,以及復(fù)合函數(shù)的求導(dǎo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文)某民營企業(yè)年初用108萬元購買一條先進(jìn)的生產(chǎn)流水線,第一年各種費(fèi)用支出12萬元,以后每年支出都比上一年支出增加6萬元,若每年年收入為63萬元.
(1)問第幾年開始總收入超過總支出?
(2)若干年后,有兩種處理方案:
方案一:總盈利最大時(shí),以3萬元出售該套流水線;(盈利=收入-支出)
方案二:年平均盈利最大時(shí),以30萬元出售該套流水線.問那種方案合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)M(
3
,y0)
作圓O:x2+y2=1的切線,切點(diǎn)為N,如果y0=0,那么切線的斜率是
 
;如果∠OMN≥
π
6
,那么y0的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,其中俯視圖與側(cè)視圖均為半徑是2的圓,則這個(gè)幾何體的表面積是(  )
A、16πB、14π
C、12πD、8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有20名學(xué)生參加某次考試,成績(單位:分)的頻率分布直方圖如圖所示:
(Ⅰ)求頻率分布直方圖中m的值;
(Ⅱ) 分別求出成績落在[70,80),[80,90),[90,100]中的學(xué)生人數(shù);
(Ⅲ)從成績在[80,100]的學(xué)生中任選2人,求所選學(xué)生的成績都落在[80,90)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,O是底面正方形ABCD的中心,側(cè)棱PD⊥底面ABCD,E是PC的中點(diǎn).
(1)證明:PA∥EO;
(2)證明:DE⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x|x-6a|+|a|x+b.
(1)若f(x)為奇函數(shù),求a,b的值;
(2)若b=1,試討論方程f(x)=0的零點(diǎn)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn)分別為F1、F2,離心率為
3
,過F1且與x軸垂直的直線與雙曲線C交于A,B兩點(diǎn),則|AF1|與|AF2|的關(guān)系是( 。
A、2|AF2|=3|AF1|
B、|AF2|=2|AF1|
C、|AF2|=3|AF1|
D、3|AF2|=4|AF1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是
 
. 

查看答案和解析>>

同步練習(xí)冊答案