(文)某民營企業(yè)年初用108萬元購買一條先進的生產(chǎn)流水線,第一年各種費用支出12萬元,以后每年支出都比上一年支出增加6萬元,若每年年收入為63萬元.
(1)問第幾年開始總收入超過總支出?
(2)若干年后,有兩種處理方案:
方案一:總盈利最大時,以3萬元出售該套流水線;(盈利=收入-支出)
方案二:年平均盈利最大時,以30萬元出售該套流水線.問那種方案合算?
考點:函數(shù)最值的應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:(1)設(shè)第n年開始,盈利為y萬元,從而可得y=63n-[12n+
n(n-1)
2
×6
]-108=-3n2+54n-108;從而令y>0解得即可.
(2)分別計算兩種方案的總獲利,比較即可.
解答: 解:(1)設(shè)第n年開始,盈利為y萬元,
則y=63n-[12n+
n(n-1)
2
×6
]-108
=-3n2+54n-108,(n∈N*);
令y>0得,3n2--54n+108<0,
故9-3
5
<n<9+3
5
,
∵n∈N,∴第3年開始盈利.

(2)若干年后,有兩種處理方案:
方案一:∵y=-3n2+54n-108=-3(n-9)2+135,
∴當n=9時,ymax=135;
故共可獲利135+3=138萬元;
方案二:年平均盈利為
y
n
=54-3(n+
36
n
)≤18,
(當且僅當n=
36
n
,即n=6時,等號成立),
共可獲利18×6+30=138萬元;
但方案一的時間長,故方案二合算.
點評:本題考查了函數(shù)在實際問題中的應(yīng)用,同時考查了基本不等式的應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)
AC
=m
AP
-3
AB
,且
S△PAB
S△ABC
=
1
5
,則實數(shù)m的值為( 。
A、3或-3B、6或-6
C、4或-4D、5或-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中若A(10,-
3
),B(6,
π
3
)則線段AB中點的極坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3a2x-6a2+3a(a>0)有且僅有一個零點x0,若x0>0,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:
a
、
b
c
是同一平面內(nèi)的三個向量,其中
a
=(1,2)
(1)若|
c
|=2
5
,且
c
a
,求
c
的坐標;
(2)若|
b
|=
5
2
,且
a
+2
b
2
a
-
b
垂直,求
a
b
的夾角θ;
(3)若
b
=(1,1),且
a
a
b
的夾角為銳角,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點A(-3,-4),B(6,3)到直線l:ax+y+1=0的距離相等,則實數(shù)a的值為( 。
A、
7
9
B、-
1
3
C、
7
9
1
3
D、-
7
9
或-
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1.對n∈N*有an≠0且Sn=
n+1
2
an
(1)求數(shù)列{an}的通項公式;
(2)求證:
1
a
2
1
+
1
a
2
2
+
1
a
2
3
+…+
1
a
2
n
7
4
;
(3)若數(shù)列{bn}的各項都為正數(shù),且(bnn+1=an+1,求數(shù)列{bn}的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ln|x-2|-m(m∈R)的所有零點之和為(  )
A、-4B、2
C、4D、與實數(shù)m有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
x2+1
-ax(a>0),求a的取值范圍,使函數(shù)f(x)在(0,+∞)上是單調(diào)函數(shù).

查看答案和解析>>

同步練習冊答案