【題目】已知=(2asin2x,a),=(-1,2 sinxcosx+1),O為坐標(biāo)原點,a≠0,設(shè)f(x)=+b,b>a. (1)若a>0,寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)y=f(x)的定義域為[ ,π],值域為[2,5],求實數(shù)a與b的值.
【答案】(1) ; (2)或.
【解析】
(1)先化簡函數(shù)得f(x)= 2asin +b,再求函數(shù)的單調(diào)增區(qū)間.(2)對a分類討論,利用不等式的性質(zhì)和三角函數(shù)的圖像和性質(zhì),求出函數(shù)的最大值和最小值即得a和b的值.
(1)f(x)=-2asin2x+2asinxcosx+a+b=2asin +b,
∵a>0,∴由2kπ-≤2x+≤2kπ+得,kπ-≤x≤kπ+,k∈Z.
∴函數(shù)y=f(x)的單調(diào)遞增區(qū)間是[kπ-,kπ+](k∈Z)。
(2)x∈[,π]時,2x+∈ ,sin∈
當(dāng)a>0時,f(x)∈[-2a+b,a+b] ∴ ,得,
當(dāng)a<0時,f(x)∈[a+b,-2a+b]
∴ ,得綜上知, 或 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從5本不同的科普書和4本不同的數(shù)學(xué)書中選出4本,送給4位同學(xué),每人1本,問:
(1)如果科普書和數(shù)學(xué)書各選2本,共有多少種不同的送法?(各問用數(shù)字作答)
(2)如果科普書甲和數(shù)學(xué)書乙必須送出,共有多少種不同的送法?
(3)如果選出的4本書中至少有3本科普書,共有多少種不同的送法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)如圖,在直角坐標(biāo)系中,角的頂點是原點,始邊與軸正半軸重合.終邊交單位圓于點,且,將角的終邊按逆時針方向旋轉(zhuǎn),交單位圓于點,記.
(1)若,求;
(2)分別過作軸的垂線,垂足依次為,記的面積為,的面積為,若,求角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的方程,給出下列四個命題
①存在實數(shù),使得方程恰有2個不同的實根;
②存在實數(shù),使得方程恰有4個不同的實根;
③存在實數(shù),使得方程恰有5個不同的實根;
④存在實數(shù),使得方程恰有7個不同的實根
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,其左、右焦點分別為,上頂點為,為坐標(biāo)原點,過的直線交橢圓于兩點,.
(1)若直線垂直于軸,求的值;
(2)若,直線的斜率為,則橢圓上是否存在一點,使得關(guān)于直線成軸對稱?如果存在,求出點的坐標(biāo);如果不存在,請說明理由;
(3)設(shè)直線:上總存在點滿足,當(dāng)的取值最小時,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù);
(1)求實數(shù)的值.
(2)試判斷函數(shù)的單調(diào)性的定義證明;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足①對于任意,都有;②;③的圖像與軸的兩個交點之間的距離為4.
(1)求的解析式;
(2)記
①若為單調(diào)函數(shù),求的取值范圍;
②記的最小值為,討論函數(shù)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】華為手機作為華為公司三大核心業(yè)務(wù)之一,2018年的銷售量躍居全球第二名,某機構(gòu)隨機選取了100名華為手機的顧客進行調(diào)查,并將這人的手機價格按照,,…分成組,制成如圖所示的頻率分布直方圖,其中是的倍.
(1)求,的值;
(2)求這名顧客手機價格的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);
(3)利用分層抽樣的方式從手機價格在和的顧客中選取人,并從這人中隨機抽取人進行回訪,求抽取的人手機價格在不同區(qū)間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com