A. | A=4 | B. | ω=1 | C. | B=4 | D. | φ=-$\frac{π}{3}$ |
分析 由函數(shù)的圖象的頂點坐標求出A和B,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
解答 解:根據(jù)函數(shù)y=Acos(ωx+φ)+B的一部分圖象,可得B=2,A=4-2=2,
$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{5π}{12}$-$\frac{π}{6}$,求得ω=2.
再根據(jù)五點法作圖可得2•$\frac{π}{6}$+φ=0,求得φ=-$\frac{π}{3}$,∴y=2cos(2x-$\frac{π}{3}$)+2,
故選:D.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [4,+∞) | B. | (4,+∞) | C. | (-∞,4] | D. | (-∞,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sin(3x-$\frac{3π}{4}$) | B. | y=sin(3x+$\frac{π}{4}$) | C. | y=sin(3x-$\frac{π}{4}$) | D. | y=sin(3x+$\frac{3π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com