14.把函數(shù)y=sin3x的圖象向右平移$\frac{π}{4}$個長度單位,所得曲線的對應(yīng)函數(shù)式( 。
A.y=sin(3x-$\frac{3π}{4}$)B.y=sin(3x+$\frac{π}{4}$)C.y=sin(3x-$\frac{π}{4}$)D.y=sin(3x+$\frac{3π}{4}$)

分析 根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律即可求解.

解答 解:把函數(shù)y=sin3x的圖象向右平移$\frac{π}{4}$個長度單位,所得曲線的對應(yīng)函數(shù)式為y=sin[3(x-$\frac{π}{4}$)]=sin(3x-$\frac{3π}{4}$).
故選:A.

點評 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,在正方體ABCD-A1B1C1D1,若E是AD的中點,則異面直線A1B與C1E所成角等于90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.變量x,y滿足$\left\{{\begin{array}{l}{3x-y-2≥0}\\{x+2y-3≥0}\\{4x+y-12≤0}\end{array}}\right.$,則(x-3)2+(y-3)2的范圍是[$\frac{9}{17},9$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=Acos(ωx+φ)+B的一部分圖象如圖所示,如果A>0,ω>0,|φ|<$\frac{π}{2}$,則( 。
A.A=4B.ω=1C.B=4D.φ=-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(θ)=12cosθ+5sinθ(θ∈[0,2π))在θ=θ0處取得最小值,則點M(cosθ0,sinθ0)關(guān)于坐標原點對稱的點坐標是($\frac{12}{13}$,$\frac{5}{13}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)為偶函數(shù),當(dāng)x≥0時,f(x)=-(x-1)2+1,則滿足f[f(a)+$\frac{1}{2}$]=$\frac{1}{2}$的實數(shù)a的個數(shù)為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.命題“?x∈R,x2-2x+1<0”的否定形式為?x0∈R,x${\;}_{0}^{2}$-2x0+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)=log${\;}_{\frac{1}{2}}$(2sin$\frac{x}{2}$).
(1)求這個函數(shù)的單調(diào)遞減區(qū)間;
(2)求使f(x)<0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.將集合{2x+2y+2z|x,y,z∈N,x<y<z}中的數(shù)從小到大排列,第100個數(shù)為524(用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊答案