10.等邊三角形的邊長為a,它繞其一邊所在的直線旋轉(zhuǎn)一周,則所得旋轉(zhuǎn)體的表面積為$\sqrt{3}π$a2

分析 幾何體為兩個同底等高的圓錐組合而成,幾何體表面為兩個圓錐的側(cè)面,圓錐母線長為a,高為$\frac{1}{2}a$,求出底面半徑,代入側(cè)面積公式即可.

解答 解:將等邊三角形繞其一邊旋轉(zhuǎn)一周得到的幾何體為兩個同底等高的圓錐組合而成,圓錐母線長為a,高為$\frac{1}{2}a$,
∴圓錐的底面半徑為$\sqrt{{a}^{2}-(\frac{a}{2})^{2}}$=$\frac{\sqrt{3}a}{2}$,
∴旋轉(zhuǎn)體的表面積S=2×π×$\frac{\sqrt{3}a}{2}$×a=$\sqrt{3}π{a}^{2}$.
故答案為:$\sqrt{3}π{a}^{2}$.

點評 本題考查了圓錐的結(jié)構(gòu)特征和側(cè)面積計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=2ax+lnx的圖象經(jīng)過點P(1,3),則a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}滿足an•an-2=an-1(n>2,n∈N),且a1=2,a2=3,則a2012=( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解不等式:-x2-$\sqrt{2}$•x+4≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.變量x,y滿足$\left\{{\begin{array}{l}{3x-y-2≥0}\\{x+2y-3≥0}\\{4x+y-12≤0}\end{array}}\right.$,則(x-3)2+(y-3)2的范圍是[$\frac{9}{17},9$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)$f(x)={({\frac{1}{3}})^x}$與g(x)=3-x的圖象的交點為( x0,y0 ),則x0所在的區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=Acos(ωx+φ)+B的一部分圖象如圖所示,如果A>0,ω>0,|φ|<$\frac{π}{2}$,則( 。
A.A=4B.ω=1C.B=4D.φ=-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)為偶函數(shù),當(dāng)x≥0時,f(x)=-(x-1)2+1,則滿足f[f(a)+$\frac{1}{2}$]=$\frac{1}{2}$的實數(shù)a的個數(shù)為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,|$\overrightarrow{c}$|=1,($\overrightarrow{a}-\overrightarrow{c}$)•($\overrightarrow-\overrightarrow{c}$)=$\overrightarrow{0}$,則|$\overrightarrow{a}-\overrightarrow$|的最大值為$\sqrt{34}$.

查看答案和解析>>

同步練習(xí)冊答案