6.如圖,用小刀切一塊長(zhǎng)方體橡皮的一個(gè)角,在棱AD、AA1、AB上的截點(diǎn)分別是E、F、G,則截面△EFG( 。
A.一定是等邊三角形B.一定是鈍角三角形
C.一定是銳角三角形D.一定是直角三角形

分析 由已知得∠EGF<90°,∠EFG<90°,∠GEF<90°,從而截面△EFG是銳角三角形.

解答 解:用小刀切一塊長(zhǎng)方體橡皮的一個(gè)角,
在棱AD、AA1、AB上的截點(diǎn)分別是E、F、G,
則∠EGF<∠CBD=90°,
同理∠EFG<90°,∠GEF<90°,
∴截面△EFG是銳角三角形,
故選:C.

點(diǎn)評(píng) 本題考查三角形形狀的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.函數(shù)f(x)=Asin(ωx-$\frac{π}{3}$)(A>0,ω>0)的最大值為2,其圖象相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的最小正周期及解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)$f(x)=cosx(\sqrt{3}cosx-sinx)-\sqrt{3}$
(1)求函數(shù)f(x)的最小正周期和圖象的對(duì)稱軸方程.
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.
(3)求函數(shù)y=f(x)在區(qū)間$[0,\frac{π}{2}]$上的最小值,并求使y=f(x)取得最小值時(shí)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知曲線C:y=x3+5x2+3x.
(1)求曲線C導(dǎo)函數(shù).
(2)求曲線C在x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知命題p:?x∈N*,2x>x2,則¬p是( 。
A.?x∈N*,2x>x2B.?x∈N*,2x≤x2C.?x∈N*,2x≤x2D.?x∈N*,2x<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,長(zhǎng)方形的四個(gè)頂點(diǎn)為O(0,2),A(4,0),B(4,2),C(0,2),曲線y=$\sqrt{x}$經(jīng)過(guò)點(diǎn)B.現(xiàn)將一質(zhì)點(diǎn)隨機(jī)投入長(zhǎng)方形OABC中,則質(zhì)點(diǎn)落在圖中陰影區(qū)域的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.( I)求值:log23•log34-log20.125-$\sqrt{2{7}^{\frac{2}{3}}}$;
( II)求值:sin15°+cos15°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一條弦所在直線的方程x-y-3=0,弦的中點(diǎn)坐標(biāo)為(2,-1),求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={x|x2-6x+5≤0},B={x|2x≥4},則A∩B=( 。
A.{x|2≤x≤6}B.{x|2≤x≤5}C.{x|2<x<5}D.{x|1≤x≤2}

查看答案和解析>>

同步練習(xí)冊(cè)答案