11.如圖,長(zhǎng)方形的四個(gè)頂點(diǎn)為O(0,2),A(4,0),B(4,2),C(0,2),曲線y=$\sqrt{x}$經(jīng)過點(diǎn)B.現(xiàn)將一質(zhì)點(diǎn)隨機(jī)投入長(zhǎng)方形OABC中,則質(zhì)點(diǎn)落在圖中陰影區(qū)域的概率是$\frac{2}{3}$.

分析 本題考查的知識(shí)點(diǎn)是幾何概型的意義,關(guān)鍵是要找出圖中陰影部分的面積,并將其與長(zhǎng)方形面積一塊代入幾何概型的計(jì)算公式進(jìn)行求解.

解答 解:由已知易得:S長(zhǎng)方形=4×2=8,
S陰影=∫04($\sqrt{x}$)dx=$\frac{2}{3}{x}^{\frac{3}{2}}{|}_{0}^{4}$=$\frac{16}{3}$,故質(zhì)點(diǎn)落在圖中陰影區(qū)域的概率P=$\frac{\frac{16}{3}}{8}$=$\frac{2}{3}$,
故答案為$\frac{2}{3}$.

點(diǎn)評(píng) 幾何概型的概率估算公式中的“幾何度量”,可以為線段長(zhǎng)度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),過F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段F1F2為直徑的圓上,則該雙曲線的離心率為( 。
A.3B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$y=sin(2x+\frac{π}{3}-2m)(m>0)$為偶函數(shù),則m的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等比數(shù)列{an}中,an>0,a5a6=9,則log3a1+log3a2+log3a3+…+log3a10=( 。
A.12B.10C.8D.2+log35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,用小刀切一塊長(zhǎng)方體橡皮的一個(gè)角,在棱AD、AA1、AB上的截點(diǎn)分別是E、F、G,則截面△EFG(  )
A.一定是等邊三角形B.一定是鈍角三角形
C.一定是銳角三角形D.一定是直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某校從參加考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段后得到如下部分頻率分布直方圖如圖.觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在[70,80)內(nèi)的頻率;
(2)估計(jì)本次考試的中位數(shù);(精確到0.1)
(3)用分層抽樣(按[60,70)、[70,80)分?jǐn)?shù)段人數(shù)比例)的方法在分?jǐn)?shù)段為[60,80)的學(xué)生中抽取一個(gè)容量為 6 的樣本,將該樣本看成一個(gè)總體,從中任取2人,求恰有1人在分?jǐn)?shù)段[70,80)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=$\frac{{e}^{2}{x}^{2}+1}{x}$,g(x)=$\frac{{e}^{2}x}{{e}^{x}}$,對(duì)任意${x_1},{x_2}∈({\frac{1}{e},+∞})$,不等式$\frac{{g({x_1})}}{k}<\frac{{f({x_2})}}{k+2}$恒成立,則正數(shù)k的取值范圍是( 。
A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知三棱錐O-ABC,點(diǎn)M,N分別為AB,OC的中點(diǎn),且$\overrightarrow{OA}$=$\vec a$,$\overrightarrow{OB}$=$\vec b$,$\overrightarrow{OC}$=$\vec c$,用$\vec a$,$\vec b$,$\vec c$表示$\overrightarrow{MN}$,則$\overrightarrow{MN}$等于( 。
A.$\frac{1}{2}(\vec b+\vec c-\vec a)$B.$\frac{1}{2}(\vec a+\vec b-\vec c)$)C.$\frac{1}{2}(\vec a-\vec b+\vec c)$D.$\frac{1}{2}(\vec c-\vec a-\vec b)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸,硝酸鹽18噸;生產(chǎn)1車皮乙種肥料需要的主要原料是磷酸鹽1噸,硝酸鹽15噸.現(xiàn)庫存磷酸鹽10噸,硝酸鹽66噸,在此基礎(chǔ)上生產(chǎn)這兩種混合肥料.如果生產(chǎn)1車皮甲種肥料產(chǎn)生的利潤(rùn)為12 000元,生產(chǎn)1車皮乙種肥料產(chǎn)生的利潤(rùn)為7 000元,那么可產(chǎn)生的最大利潤(rùn)是( 。
A.29 000元B.31 000元C.38 000元D.45 000元

查看答案和解析>>

同步練習(xí)冊(cè)答案