【題目】已知函數(shù),,其導(dǎo)函數(shù)為.
(1)討論函數(shù)的單調(diào)性;
(2)若,關(guān)于的不等式恒成立,求實數(shù)的取值范圍;
(3)若函數(shù)有兩個零點,,求證:.
【答案】(1)見解析;(2);(3)證明見解析
【解析】
(1)求導(dǎo)得到,討論和兩種情況,得到答案.
(2),設(shè),求導(dǎo)得到單調(diào)性得到,得到答案.
(3)要證,即,構(gòu)造函數(shù),證明函數(shù)單調(diào)遞減,得到,根據(jù)單調(diào)性得到答案.
(1),,
當(dāng)時,恒成立,函數(shù)單調(diào)遞增;
當(dāng)時,,,故在上單調(diào)遞減,在上單調(diào)遞增.
綜上所述:時,函數(shù)在R上單調(diào)遞增,時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
(2),即,設(shè),
則
設(shè),則在上恒成立,故單調(diào)遞增,
故,故在上單調(diào)遞減,在上單調(diào)遞增,
故,故.
(3),故,,相加得到.
要證,即證,即.
,即,設(shè),則,
函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,
函數(shù)圖像如圖所示:故取,
構(gòu)造函數(shù),,
,,函數(shù)在上單調(diào)遞減,故,
當(dāng)時,,函數(shù)單調(diào)遞減,,故.
即,即,,,函數(shù)單調(diào)遞增,
故,即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解學(xué)生使用手機的情況,分別在高一和高二兩個年級各隨機抽取了100名學(xué)生進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均使用手機時間的頻數(shù)分布表和頻率分布直方圖,將使用手機時間不低于80分鐘的學(xué)生稱為“手機迷”.
(I)將頻率視為概率,估計哪個年級的學(xué)生是“手機迷”的概率大?請說明理由.
(II)在高二的抽查中,已知隨機抽到的女生共有55名,其中10名為“手機迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認為“手機迷”與性別有關(guān)?
非手機迷 | 手機迷 | 合計 | |
男 | |||
女 | |||
合計 |
附:隨機變量(其中為樣本總量).
參考數(shù)據(jù) | 0.15 | 0.10 | 0.05 | 0.025 | |
span>2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在區(qū)間(為自然對數(shù)的底數(shù))上有唯一的零點,求實數(shù)的取值范圍;
(2)若在(為自然對數(shù)的底數(shù))上存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自新型冠狀病毒疫情爆發(fā)以來,人們時刻關(guān)注疫情,特別是治愈率,治愈率累計治愈人數(shù)/累計確診人數(shù),治愈率的高低是“戰(zhàn)役”的重要數(shù)據(jù),由于確診和治愈人數(shù)在不斷變化,那么人們就非常關(guān)心第天的治愈率,以此與之前的治愈率比較,來推斷在這次“戰(zhàn)役”中是否有了更加有效的手段,下面是一段計算治愈率的程序框圖,請同學(xué)們選出正確的選項,分別填入①②兩處,完成程序框圖.( )
:第天新增確診人數(shù);:第天新增治愈人數(shù);:第天治愈率
A.,B.,
C.,D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面,已知,,,點是棱的中點.
(1)求證:平面;
(2)求二面角的余弦值;
(3)在棱上是否存在一點,使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到直線的距離比到點的距離大
(1)求動點的軌跡的方程;
(2)為上兩點,為坐標原點,,過分別作的兩條切線,相交于點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小姜同學(xué)有兩個盒子和,最初盒子有6枚硬幣,盒子是空的.在每一回合中,她可以將一枚硬幣從盒移到盒,或者從盒移走枚硬幣,其中是盒中當(dāng)前的硬幣數(shù).當(dāng)盒空時她獲勝.則小姜可以獲勝的最少回合是( )
A.三回合B.四回合C.五回合D.六回合
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形AMDE的邊長為2,B,C分別為AM,MD的中點.在五棱錐P-ABCDE中,F為棱PE的中點,平面ABF與棱PD,PC分別交于點G,H.
(1)求證:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE.求直線BC與平面ABF所成角的大小,并求線段PH的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的直角坐標方程,并求時直線的普通方程;
(2)直線和曲線交于、兩點,點的直角坐標為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com